Entropy Approach in Methods of Electroencephalogram Automatic Analysis

Abstract

The article explores the possibility of using the entropy characteristics of the time series of the electroencephalogram signal for the task of automatically detecting epileptic seizures by electroencephalogram recording. Because of the brain is a complex distributed active environment, self-oscillating processes take place in it. These processes can be judged by the EEG signal, which is a reflection of the total electrical activity of brain neurons. Based on the assumption that during an epileptic seizure, excessive synchronization of neurons occurs, leading to a decrease in the dynamic complexity of the electroencephalographic signal, entropy can be considered as a parameter characterizing the degree of systemic chaos. The sample entropy method is a robust method for calculating entropy for short time series. In this work, the sample entropy was calculated for an electroencephalographic record of a patient with epilepsy obtained from an open set of clinical data. The calculation was made for different sections of the recording, corresponding to the norm and pathology (generalized epileptic seizure). It has been shown that the entropy characteristics of the electroencephalogram signal can serve as informative features for machine learning algorithms to automatically detect signs of neurological pathology associated with epilepsy.

The article is not prepared yet for the html view. Check back soon.

Copyright information

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

About this article

Publication Date

27 February 2023

eBook ISBN

978-1-80296-960-3

Publisher

European Publisher

Volume

1

Print ISBN (optional)

-

Edition Number

1st Edition

Pages

1-403

Subjects

Cite this article as:

Egorova, L. (2023). Entropy Approach in Methods of Electroencephalogram Automatic Analysis. In P. Stanimorovic, A. A. Stupina, E. Semenkin, & I. V. Kovalev (Eds.), Hybrid Methods of Modeling and Optimization in Complex Systems, vol 1. European Proceedings of Computers and Technology (pp. 275-282). European Publisher. https://doi.org/10.15405/epct.23021.34