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Abstract 

 
The article explores the possibility of using the entropy characteristics of the time series of the 
electroencephalogram signal for the task of automatically detecting epileptic seizures by 
electroencephalogram recording. Because of the brain is a complex distributed active environment, self-
oscillating processes take place in it. These processes can be judged by the EEG signal, which is a reflection 
of the total electrical activity of brain neurons. Based on the assumption that during an epileptic seizure, 
excessive synchronization of neurons occurs, leading to a decrease in the dynamic complexity of the 
electroencephalographic signal, entropy can be considered as a parameter characterizing the degree of 
systemic chaos. The sample entropy method is a robust method for calculating entropy for short time series. 
In this work, the sample entropy was calculated for an electroencephalographic record of a patient with 
epilepsy obtained from an open set of clinical data. The calculation was made for different sections of the 
recording, corresponding to the norm and pathology (generalized epileptic seizure). It has been shown that 
the entropy characteristics of the electroencephalogram signal can serve as informative features for machine 
learning algorithms to automatically detect signs of neurological pathology associated with epilepsy.  
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1. Introduction 

Machine learning is an interdisciplinary field in which the mathematical apparatus of various 

disciplines is widely used, such as linear algebra, methods of probability theory, statistics, dynamical 

systems theory, modern optimization methods, and many others. The accumulation of large volumes of 

biomedical data has provided new opportunities for the development of algorithms for automatic data 

analysis and the creation of high-performance software for their automatic interpretation. Data mining 

algorithms make it possible to search for and reveal hidden and non-trivial patterns in data and gain new 

knowledge about the objects under study (Kazakovtsev et al., 2020). Currently, it is impossible to imagine 

the further development of medical technologies without the use of machine learning technologies. 

Therefore, the demand for software products that can facilitate manual data processing or perform it fully 

automatically in real time is constantly growing. 

This article discusses the possibility of using entropy as a measure of signal complexity as an 

informative feature for machine learning algorithms in the task of automatically detecting pathologies 

associated with epilepsy according to electroencephalogram (EEG) recording data. 

2. Problem Statement 

Epilepsy is a group of neurological disorders characterized by involuntary seizure activity, which is 

reflected in the recording of the electroencephalogram (Fergus et al., 2015). 

An electroencephalogram is a non-invasive, inexpensive, and extremely informative method for 

studying the functional state of the brain, which is widely used to diagnose a number of diseases, such as 

stroke, epilepsy, and other disorders of the nervous system (Obeid & Picone, 2018). Despite the emergence 

of such modern methods of brain research as CT and MRI, the electroencephalogram still remains 

important, and for some diseases, such as epilepsy, an indispensable tool for studying the state of the 

nervous system both in scientific research and in clinical practice. An electroencephalogram is a record of 

electrical potentials resulting from the total electrical activity of billions of neurons in the brain, recorded 

using special electrodes from the surface of the patient's head. The use of EEG in clinical practice involves 

manual analysis of continuous EEG recordings up to 72 hours long, which is a laborious and expensive task 

that requires the involvement of by board-certified neurologists (Shah et al., 2018). Therefore, the 

development of methods and algorithms capable of automatically detecting signs of seizure activity from 

the EEG recording, with sufficient accuracy and speed for clinical applications, is an urgent task. Quite 

often, in machine learning problems, finding suitable features is no less difficult than actually solving it 

(Goodfellow et al., 2018). The choice of the most informative features is a key problem in the development 

of algorithms for automatic analysis of EEG data. 

3. Purpose of the Study 

One of the properties of complex systems, which include the brain, is a high ability to adapt to 

environmental changes. There are many examples of the colossal adaptive ability of the brain, when the 

loss of sufficiently large parts of it is compensated by the work of others. Such high adaptive capabilities 
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are characteristic of chaotic systems capable of being in a non-equilibrium state with a high degree of 

uncertainty in the short term, but possessing, however, long-term stability. Reducing the complexity of such 

systems leads to a decrease in their adaptive capabilities (Peters, 2000). The purpose of this study is to show 

that when an epileptic seizure occurs, as a result of excessive synchronization of the work of brain neurons, 

the dynamic complexity of the EEG signal decreases, which is reflected in a change in the signal entropy 

value. 

4. Research Questions 

The main question of the study is the question of whether the value of the entropy of the signal 

changes when an epileptic seizure occurs. If the signal entropy value for the recording sections 

corresponding to an epileptic seizure differs from the normal recording, then the entropy can be used as an 

informative feature for machine learning algorithms. 

5. Research Methods 

5.1. The Emergence of brain rhythms based on the theory of dynamical systems 

The brain is a distributed environment consisting of many active elements of the same type which 

are neurons. The combination of these elements, interacting with each other, form an integral organ, which, 

not being a closed system, continuously exchanges matter and energy with the environment. Such complex 

distributed active media with the presence of energy dissipation are characterized by self-organization 

processes. Due to the cumulative, cooperative action of a large number of objects in such systems, they are 

able to form various permanent or temporary spatial structures (Loskutov & Mikhailov, 2007). In the brain 

processes of self-organization (morphogenesis) also occurs when large populations of neurons form 

structures that function quite independently. 

In addition to self-organization processes self-oscillations (fluctuations) often occur in such complex 

distributed systems. Despite the fact that the nature of these systems may be different and their constituent 

elements may be quite complex, this complexity does not manifest itself at the macro level. There are many 

examples of physical and chemical systems in which fluctuations, which play a fundamental role, arise as 

a result of self-organization processes. An example of such self-oscillations in complex biological systems 

can be fluctuations in the number of individuals in animal populations, periodic processes of 

photosynthesis, and many others (Haken, 2004). 

The causes of fluctuations in complex distributed systems can be both external and internal 

endogenous factors. Self-oscillatory processes in the brain, the source of which are huge populations of 

neurons, are expressed at the macroscopic level in the rhythmic electrical activity of the brain, which can 

be recorded using an electroencephalographic device in various frequency ranges. 

When considering complex systems, the chaos model is often used as the main model. Recently, the 

issues of modeling real chaotic systems have been given great importance. The choice of parameters for a 

model of a chaotic system is a rather difficult task, since such systems are very sensitive both to initial 

conditions and to small changes in parameters. To estimate the parameters of chaotic systems, optimization 

methods are currently widely used, including those based on genetic algorithms, particle swarm 
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optimization, evolutionary algorithms, etc. (Volos et al., 2020). The main parameters characterizing chaotic 

systems are the average rate of information generation by a random data source (entropy) and the Lyapunov 

exponents (Pincus, 1991). 

5.2. Entropy approach in methods of biomedical data analysis 

Entropy as a measure of chaos is the most important universal concept that characterizes complex 

systems of various nature. The value of entropy gives an idea of how far the system is from a structured 

state and close to completely chaotic. Entropy is a very informative parameter that quantitatively 

characterizes the state of the system and is, on the one hand, a measure of the system's randomness, and, 

on the other hand, a measure of the missing information about the system. That is why entropy methods 

can be used to analyze data generated by a wide variety of natural and man-made systems, regardless of 

their origin. The evolution of the concept of entropy today covers at least several dozen generalizations of 

entropies. Entropy methods are widely used in various fields of science and technology, such as encryption, 

machine learning, natural language processing, and many others. In the technique of natural data analysis, 

an important place is occupied by methods based on the calculation of entropies by K. Shannon, A. 

Kolmogorov and A. Renyi (Chumak, 2011; dos Santos & Milidiú, 2012; Tian et al., 2011). 

5.2.1. Shannon entropy 

Information theory gives us the following definition of entropy, as a measure of system uncertainty 

proposed by Shannon (Shannon & Weaver, 1948): 

 

𝑆 ∼ −∑ 𝑃! 𝑙𝑛 𝑃!! ,                                                                       (1) 

 

where {Pi} – probabilities for the system to be in states {i}.  

5.2.2. Kolmogorov entropy 

In the theory of dynamical systems, Kolmogorov generalized the concept of entropy to ergodic 

random processes through the limiting probability distribution having density f(x) (Chumak, 2011). Ergodic 

theory makes an attempt to explain the macroscopic characteristics of physical systems in terms of the 

behavior of the microscopic structure of the system (Martin & England, 1984). The Kolmogorov entropy 

is the most important characteristic of a chaotic system in a phase space of arbitrary dimension, showing 

the degree of chaoticity of a dynamic system. It can be defined as follows (Chumak, 2011; Schuster, 1988): 

let there be some stationary random process X(t) = [x1(t), x2(t), … xd(t)] on a strange attractor in a d-

dimensional phase space. Consider some implementation of a random process, which is a temporal 

sequence of system states. We also define some finite sample (trajectory) i of the dynamical system from 

the given implementation. Let us divide the d-dimensional phase space of the system into cells of ld size. 

We will determine the state of the system at equal time intervals τ. Let us denote the 𝑃!! …𝑃!"	joint 

probability so that X(t=0) is in i0 cell, X(t=τ) is in i1 cell , … , X(t=nτ) is in in cell. Then, according to 

Shannon, the quantity 
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𝐾# = −∑ 𝑃!!…!" 𝑙𝑛 𝑃!!…!"!!…!" ,                                                              (2) 

which is a measure of the a priori uncertainty of the position of the system is proportional to the 

information required to obtain the position of the system on a given 𝑖%∗, … 𝑖#∗ 	trajectory with an accuracy of 

l, if only 𝑃!! …𝑃!" is known a priori. Therefore, Kn+1-Kn is the amount of loss of information about the 

system in the time interval from n to n+1. Thus, the Kolmogorov entropy is the average rate of information 

loss over time: 

 

𝐾 = lim
'→%

	lim
)→%

	lim
*→+

,
-'
∑ (𝐾#., −𝐾#)-/,
#0% = − lim

'→%
	lim
)→%

	lim
*→+

,
-'
∑ 𝑃!!…!# 𝑙𝑛 𝑃!!…!#!!…!# .                   (3) 

 

For regular motion K=0, for random systems K=∞, for systems with deterministic chaos K is 

positive and constant (Schuster, 1988). 

5.2.3. Algorithms for calculating sample and approximate entropy for physiological data 

Equation (3) implies limiting values for temporal and spatial partitions and an infinite length of the 

time series under study. This limits the use of the Kolmogorov entropy by analytical systems and makes it 

difficult to use it for short and noisy time series of real measurements. To calculate the entropy of such time 

series, special robust methods were developed, based, for example, on the concept of approximate entropy 

and elementary sample entropy (sample entropy). These methods can significantly reduce the dependence 

of the calculation result on the sample length (Pincus, 1991; Richman & Moorman, 2000). 

Approximate entropy and sample entropy are two statistics that make it possible to evaluate the 

randomness of a time series without having any prior knowledge of the data source (Delgado-Bonal & 

Marshak, 2019). Sample entropy (sampEn) is a method for estimating the entropy of a system that can be 

applied to short and noisy time series. The sample entropy gives a more accurate entropy estimate (Richman 

& Moorman, 2000) than the approximate entropy (Approximate entropy, apEn) introduced by Pincus 

(Pincus, 1991; Pincus & Goldberger, 1994). 

5.3. Data used in the experiment 

The data source was an open dataset of EEG clinical records at Temple University Hospital (TUH), 

Philadelphia, USA. This dataset is the largest publicly available dataset specifically designed to support 

research related to the development of machine learning algorithms for automated analysis of 

electroencephalogram recordings. The kit is focused on research on the detection of pathologies associated 

with epilepsy. The data in this set is manually labeled by neurologists using special labels. Due to the fact 

that the set contains real records of clinical studies, the composition of events in this set is diverse and 

complex. It contains, among other things, various epileptic events, a variant of the norm, as well as 

recording artifacts. Artifacts of the EEG recording are any extraneous events, the source of which is not the 

brain. Artifacts greatly complicate EEG analysis, both manual and automatic, and can serve as a source of 

false positives for machine learning algorithms. 
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5.4. Entropy calculation method used in the experiment 

For the calculation, the SampEn sample entropy algorithm was chosen, as it gives the highest 

accuracy for noisy and short time series, such as EEG recordings. The calculations were carried out using 

a software module developed in the Python language using the nolds library, which implements the 

calculation of the nonlinear characteristics of dynamic systems for one-dimensional time series. 

5.5. Experiment progress 

§ An EEG record of a patient suffering from epilepsy with the presence of areas of the record 

marked as pathological and areas corresponding to the norm was selected. 

§ The original signal was divided into non-overlapping windows of a fixed size, for each of which 

the sample entropy SampEn was calculated. Non-overlapping windows 2000 samples wide were 

used for calculations. Since the sampling frequency of the studied EEG records is 250 Hz, the 

window width corresponded to 8 sec. records. Calculations were carried out for all 22 channels 

(leads). 

§ The event label was set as the window label by the last value, i.e., if the last value in the window 

was marked as normal, then the entire window was marked as normal, and, accordingly, if the 

last value in the window was related to the pathological area, then the entire window was marked 

as pathological. 

§ The sample entropy value was calculated for each window. The calculation was carried out for 

each of the 22 leads. 

§ The calculation results were averaged for each of the events (normal, pathology) for all leads 

separately. 

§ Then, the average value of the sample entropy was obtained for all leads for areas corresponding 

to the norm and pathology. 

6. Findings  

Figure 1 shows the results of calculating the sample entropy SampEn for each of the 22 leads of the 

studied EEG recording. 
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 Results of calculating the sample entropy for individual leads of the EEG recording. 

 
Figure 1 shows that for the majority of leads (17 out of 22 leads), the average value of the sample 

entropy for windows corresponding to pathology (generalized epileptic seizure) is lower than for windows 

marked as normal. This gives grounds for the conclusion that the entropy values for areas of "normal" EEG 

recording are higher than for areas corresponding to an epileptic seizure. This fact suggests that during an 

epileptic seizure, large populations of neurons are involved in the mode of pathological synchronization, 

while the dynamic complexity of the EEG signal decreases, which means that the value of entropy also 

decreases. 

7. Conclusion  

Differences between the average values of the sample entropy for the recording areas corresponding 

to the norm and pathological areas corresponding to a generalized epileptic seizure suggest the possibility 

of using the sample entropy as an informative feature in algorithms for automatic analysis of EEG data to 

detect pathologies associated with epilepsy. 
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