Artificial Neural Network Architecture Tuning Algorithm


In this paper, we will consider artificial neural networks, one of the most powerful methods of data analysis. For each individual task, the type of neural network changes, and its various parameters are selected, which takes too much time and resources. To avoid these shortcomings, a self-tuning algorithm for the architecture of the neural network was developed and implemented, due to the genetic algorithm. An artificial neural network has been implemented for data classification tasks. This implementation provides the ability to select the number of hidden layers in the artificial neural network, the number of neurons on each of the layers, the type of activation functions for each neuron of the network. Nfr of the implementation of this evolutionary algorithm is the different lengths of individuals in the population and the ability to manipulate it. A genetic algorithm has been implemented that allows coding all the parameters of the neural network discussed above. The algorithm was developed using the modern Keras neural network training library. The efficiency of the developed algorithms was compared with each other.

The article is not prepared yet for the html view. Check back soon.

Copyright information

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

About this article

Publication Date

27 February 2023

eBook ISBN



European Publisher



Print ISBN (optional)


Edition Number

1st Edition




Cite this article as:

Yurshin, V. G., & Stanovov, V. V. (2023). Artificial Neural Network Architecture Tuning Algorithm. In P. Stanimorovic, A. A. Stupina, E. Semenkin, & I. V. Kovalev (Eds.), Hybrid Methods of Modeling and Optimization in Complex Systems, vol 1. European Proceedings of Computers and Technology (pp. 241-248). European Publisher.