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Abstract 
 

The article is devoted to a new indicator for forecasting critical points of financial time series based on 
modified Hölder indicators. The indicator was developed to predict large movements of financial 
instruments in the stock market. The analysis of the indicator's performance was conducted on the US and 
Russian stock markets using time series with a minute sampling frequency. It is shown that this indicator 
is able to predict large movements of financial time series with good enough statistics. The corresponding 
calculations, tables and statistics are presented. The paper shows that the developed predictor on average 
in 80% of cases in the US market and on average in 60% of cases on the Russian market correctly predicts 
large movements in the market. These results were obtained by statistical processing of all predictions of 
critical points in the markets of the USA and Russia. Also, a significant difference was found between the 
parameters of the developed indicator for the US and Russian markets. 
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1. Introduction 

The idea of predicting the dynamics of the prices of financial instruments in the stock and currency 

markets with the help of a mathematical approach arose long ago. To solve this problem researchers apply 

the whole variety of mathematical methods, beginning with simple linear models and ending with models 

of recurrent neural networks and hidden Markov processes (Khan & Gour, 2013). In particular, one of the 

possible methods for analyzing and predicting the dynamics of the stock market is based on the multifractal 

approach (Suárez-García & Gómez-Ullate, 2014; Kapecka, 2013; Kuperin & Schastlivtsev, 2008). In this 

paper we use the notion of the local Hölder exponents (LHE), which are closely related to multifractal 

analysis, which can be found, for example, in (Kuperin & Schastlivtsev, 2008). More specifically, LHE are 

defined below. Definition. Let a function ( )f t  be defined on a domain t R⊂  and satisfy the relation 

 ( )( ) ( )t
tf t t f t C tα+ ∆ − ⋅∆:   

at 0,t∆ → ( )0 1tα< ≤  and 0.tC >  Then the number ( )tα  is called the local Hölder exponent of 

the function ( )f t  at the point .t  Local Hölder exponents show how smooth the function is at a given point, 

in other words, the higher the value ( ) ,tα
the higher the smoothness of the function ( ).f t  The method 

described in this article is based on the assumption that before a strong price movement in the market, the 

time series of prices is smoothed (Kuperin & Schastlivtsev, 2008). Thus, LHE allow us to estimate the 

smoothness of the series and make a forecast about the subsequent strong price change. There are two basic 

approaches to the calculation of local Holder exponents, which have a number of advantages and 

disadvantages (Abry et al., 2009). We will describe them briefly below. Method of oscillations. It is one of 

the simplest methods for computing local Hölder exponents (Legrand et al., 2006; Trujillo et al., 2010). 

The drawback of this approach lies in the slow convergence of the values of the computed local Hölder 

exponents to their theoretical values. In other words, in practice, it is necessary to use large neighborhoods 

of a time series point   to obtain good-accuracy LHE values. Wavelet transform method. This method of 

calculating Hölder exponents is one of the most frequently used methods (Los & Yalamova, 2004; Struzik, 

2001a,b). This method can be based on both a continuous and discrete wavelet transform (Bacry et al., 

2002). The drawback of the method is the presence of the so-called edge effect, which appears when the 

wavelet transform is implemented. The edge effect for finite time series is manifested in the fact that 

changing at least one value at the beginning or at the end of the time series leads to a strong change in the 

wavelet transform. In this paper, LHE are calculated by the modified local Hölder exponents (MLHE) 

method, proposed and described in detail in (Kuperin & Schastlivtsev, 2008). Advantages of this method 

in comparison with the methods described above consist in the absence of an edge effect and in the rapid 

convergence of the computed values to the corresponding theoretical values. It should be noted that in this 

paper the method of calculating MLHE in comparison with the computational procedure proposed in 

(Kuperin & Schastlivtsev, 2008) has been changed. Namely, we do not use the notion of a signal line. 

proposed in (Kuperin & Schastlivtsev, 2008), and we perform MLHE smoothing not with the help of the 

moving average, but with the help of the Hodrick-Prescott filter (Cogley & Nason, 1995). 
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2. Basic concepts 

The method of MLHE allows to determine changes in the dynamics of financial time series, 

characterized by strong amplitude motions of the series. Let the amplitude of the MLHE be determined by 

the difference between the maximum and minimum.  

Definition 1. We call the MLHE signal the amplitude of the MLHE exceeding a certain threshold 

value ,s  the value of which is determined by numerical experiment. We will assume that the signal appears 

at the maximum st of the amplitude of the MLHE. The point in time, in which a large motion of the time 

series begins, will be called the critical point of the time series. 

An important step in calculating the statistics of the MLHE method is the definition of the term 

"movement of the financial time series". Obviously, depending on what definition to adopt, different results 

will be obtained. For objectivity and greater coverage of possible ways of applying the method of MLHE 

in this paper, it is proposed to use several variants of such definitions at once and to count statistics 

according to each of the definitions separately. Also in options trading often rely on the value of volatility 

at each point in time, as its change leads to a change in the value of the option. Therefore, it is reasonable 

to make calculations regarding volatility. Below are the definitions used in calculating statistics. We 

introduce the main definitions: 

Definition 2. We define the motion ( )H ε∆ of a time series over a certain time intervalε as the 

difference between the values of the final and the first points of this interval. 

Definition 2.1. We define a large (significant) motion ( )H ε∆ in a certain time intervalε as a 

motion (see definition 2) whose value exceeds the mean value of motion on the same time interval for a 

given time series. 

Definition 2.2. We define a large (significant) motion ( )H ε∆ as a motion (see definition 2) whose 

magnitude exceeds the median value of the motion for a given time series. 

Definition 2.3. We define a large (significant) motion ( )H ε∆ of a time series in a certain time 

intervalε as the maximum difference of values (in modulus) between points inside the intervalε and the 

first point of the interval. 

Definition 3.1. We define a large (significant) motion of a time series as a motion ( ) ,H ε∆ the 

value of which exceeds the mean value of motion for a given time series. 

Definition 3.2. We define a large (significant) motion as a motion ( )H ε∆ whose value exceeds the 

median value of the motion for a given time series. 

Definition 4. We determine the volatilityV of the time series over a certain time intervalε as the 

standard deviation of the logarithmic increment of the instrument X under study on the interval ε (1). 

Definition 4.1. We define large (significant) volatility as volatility, the value of which exceeds the 

average value of volatility for a given time series: 
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Definition 5. Let us determine the average value of the motion ( )H ε∆ by the formula: 

 
( ) ( )

( )
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i

H H
n

ε

ε
ε =

∆ = ∆∑  (2) 

where iε  are disjoint time intervals of equal length ,ε and ( ) Nn ε
ε

 =   
 this is the number of intervals 

divided by the time series, N  this is the length of the time series. Here 
N
ε

 
  

 is the integer part of the 

number 
.N

ε   

We define the median value of the motion 
( )Me H ε∆    as the mean value of an ordered series 

of motions ( )iH ε∆  of the time series, where iε  are disjoint time intervals of equal length ,ε

( ) Nn ε
ε

 =   
 the number of intervals divided by the time series, N is the length of the time series.  

The algorithm for calculating the predictor of large movements for financial instruments is 

implemented in several steps: 

1. Calculation of the MLHE of the time series under study;  

2. Smoothing of MLGP by Hodrick-Prescott filter (Cogley & Nason, 1995) filter, where the trend 

curve is used as a smoothing curve.  

3. For each MLHE signal, the value of the change in the time series over the interval[ ],s st t ε+  

introduced in Definition 2 and Definition 3.  

4. If the value of movement is large (significant), then the signal is considered correct, otherwise the 

signal is considered incorrect.  

The motion is considered large according to the definition with respect to which the calculations are 

made. These calculations were carried out for all definitions of large motions (listed above) in time series. 

As a mechanism to control the objectivity of the results for each time series, the number of correct 

and incorrect signals obtained as a result of random numerical generation.  

By random generation we mean the following. Imagine that we have received a proportion of the 

correct signals of the MLHE equal to .P  Now it is necessary to show that this proportion is not accidental. 

That is, if we choose random time points (random signals) instead of the MLHE signals on the same time 

series, then the proportion of the correct signals for random selection should be lower (statistically) than 

for the signals of the MLHE. Random numerical generation is the receipt of random points in the time 
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domain of the time series, which we apply to the algorithm "as if" they are signals of large movements. If 

the proportion of the correct signals with random signals would be the same as for signals of the MLHE, 

then the signals of the MLHE would have no value, i.e. themselves would be accidental and not capable of 

predicting large movements. The random generation of signals (RSG) allows us to show what proportion 

of the "correct signals" can be obtained on the time series under study if we calculate the motions of this 

series at random points. To calculate the optimal parameters of the MLHE, a simple optimizer is used that 

sorts out all possible combinations of parameters in a given range with a given step for each parameter. 

This algorithm was used to calculate the 13 most liquid shares in the US market, as well as 5 liquid shares 

of the MICEX stock exchange for the period from 01.01.15 to 17.08.15 for the minute sampling rate of 

time series. In this paper, only data with a high sampling rate (minute values) is used. This is due to the fact 

that for statistical analysis of data it is necessary to obtain a large number of signals, that is, series containing 

about 50,000 values and higher are needed. Such a number of values in the public domain is available only 

for the minute sampling frequency, that is, series containing about 50,000 values and higher are needed. 

Optimization is carried out in three parameters: the MLHE window w  (the number of points in the series 

necessary to calculate one value of the MLHE), the intervalε and the threshold s above which the 

amplitude of the MLHE is considered to be a signal amplitude. Intervals and optimization steps are listed 

below: 

1. window MLHE w : interval [200,350], step is 30 points (such a short interval and a large step are 

chosen because of the large time for calculating the MLHE about 500 minutes into one time series); 

2. time intervalε : interval [20,220], step is 10 points; 

3. threshold value for the amplitude of the MLHE:  interval [0.1, 4], step 0.1 (measured with respect 

to the mean amplitude, i.e. 0.2 means 0.2 of the mean). 

Below is a brief description of the optimization algorithm and the objective function.  

We divide the original time series into two consecutive samples: primary (30% of the whole series) 

and secondary (70% of the whole series). On both samples, for all sets ( ), ,w s ε of parameters, we calculate 

the proportions ( ), ,P w s ε of the correct signals. Let ( ), ,P w s ε is the proportion of correct MLHE 

signals received on the primary sample with the values of the MLHE window ,w the signal threshold s and 

the time interval .ε  Likewise let be ( )ˆ , ,P w s ε is the proportion of the correct MLHE signals received on 

the secondary sample. We define an objective function as follows: 

( ) ( ) ( )ˆ, , , , , , ,F w s P w s P w sε ε ε= ∆ ⋅  (3) 

where ( ) ( )ˆ , , , , .P P w s P w sε ε∆ = −  Then the optimal values of for , ,w s ε  can be 

determined from condition  

( ) ( ) ( )* * *
ˆ

ˆ, , max min , , , , ,
PP

F w s P w s P w sε ε ε
∆

 = ∆ ⋅   (4) 

where * * *, ,w s ε  are the optimal parameters. In other words, the optimal parameters are those 

parameters for which the values of ( ), ,P w s ε and ( )ˆ , ,P w s ε differ as little as possible, and ( )ˆ , ,P w s ε

has value as large as possible. Such an optimization algorithm is necessary to obtain a stable parity of 
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parameters ( ), ,w s ε , in which the proportion of correct signals as little as possible would change with 

time. Otherwise, it may turn out that the obtained values of the fractions of the correct signals are just the 

result of excessive optimization at a given time interval and do not bear any meaningful meaning. 

3. Results and analysis 

The result of the algorithm for the minute sampling frequency on the interval from 01.01.15 to 

17.08.15 can be seen in Table 1. The result of the algorithm performance for the minute sampling frequency 

on the interval from 01.01.15 to 17.08.15 can be seen in Table 2. The abbreviations used are: RSG is random 

signal generator, RSG is a synonym for random numerical generation, that is, they are just random points 

on a time series. The generator uses a uniform distribution throughout the optimized interval, i.e. probability 

of signal appearance for all points of the interval on which the optimization is carried out are equal. We 

recall that (2.1), (2.2), (3.1), (3.2) are the sub clauses of Definitions 2 and 3 indicated at the beginning of 

the paper. The slash sign "/" separates the values of the parameters and the results of the algorithm work, 

obtained for different definitions, for example, the record (2.1) / (2.2) means that the values obtained for 

determining (2.1) go to the sign of the line, and after the sign the values obtained for (2.2). Values of 

normalized values of large movements of time series are added. The time series is normalized according to 

the formula

ˆ ,XX
X

=
where X this is the original time series, 

X
this is the average of the time series. 

The result of the algorithm for the minute sampling frequency on the interval from 01.01.15 to 17.08.15 

can be seen in Table 1. The result of the algorithm performance for the minute sampling frequency on the 

interval from 01.01.15 to 17.08.15 can be seen in Table 2. 

 

Table 1.  The interval from 01.05.15 to 17.08.15 definition 2 
Assets MLHE 

window 
Interval, 

number of 
points 

(2.1)/(2.2) 

Signal 
threshold in 
the number 

of mean 
values 

(2.1)/(2.2) 

The normalized 
value of large 

motion (2.1)/(2.2) 

Faithful 
signals of 

MLHE 
(2.1)/RSG 

 

Faithful 
signals of 

MLHE 
(2.2)/RSG 

 

Total 
number of 

signals 
(2.1)/(2.2) 

AT&T 320 70/40 1.8/2.2 0.0043/0.0023 0.81/0.35 0.90/0.5 70/57 
Apple 320 50/50 1.9/1.9 0.0047/0.0035 0.86/0.33 0.95/0.49 87/87 
H&P 320 70/70 2.9/2.9 0.0066/0.0047 0.82/0.33 0.89/0.51 60/60 

Coca-cola 320 40/40 2.8/2.8 0.0030/0.0024 0.85/0.36 0.89/0.49 56/56 
IBM 320 90/40 4.0/3.4 0.0062/0.0029 0.75/0.35 0.80/0.49 32/35 
Intel 320 50/50 2.9/2.9 0.0052/0.0037 0.93/0.35 0.95/0.49 61/61 

Microsoft 320 70/70 1.2/1.2 0.0057/0.0042 0.82/0.34 0.89/0.50 89/89 
Google 320 90/130 0.8/4 0.0091/0.0093 0.52/0.34 0.82/0.50 44/17 

McDonalds 320 60/40 1.7/2.8 0.0041/0.0024 0.78/0.36 0.89/0.51 68/54 
Exxon 320 50/50 4/4 0.0040/0.0030 0.92/0.35 1.0/0.50 52/52 

Kraft Foods 320 40/40 3.9/3.9 0.0050/0.0038 0.80/0.35 0.92/0.50 26/26 
Pfizer 320 40/50 3.7/2.8 0.0035/0.0032 0.89/0.38 0.93/0.49 45/53 

Bank Of 
America 

320 40/40 4/1.3 0.0043/0.0033 0.83/0.33 0.90/0.47 40/72 

D&J-ind 320 70/80 2.2/3.1 0.0028/0.0023 0.83/0.33 0.95/0.51 48/39 
Gazprom 320 210/200 2.4/2.4 0.0129/0.0113 0.51/0.39 0.6/0.5 77/77 

Lukoil 320 200/220 3.1/2.7 0.0116/0.0108 0.55/0.39 0.7/0.5 38/43 
Sberbank 320 220/190 2.9/1.1 0.0193/0.0149 0.53/0.38 0.6/0.5 65/110 

RTSI index 320 190/220 2.6/2.6 0.0116/0.0110 0.69/0.37 0.78/0.5 45/45 
MTS 320 220/220 1.5/3.9 0.0161/0.0131 0.56/0.37 0.66/0.47 83/36 

The work of the MLHE method is based on the hypothesis of multifractality of financial time series, 

so one can test the method (and at the same time the hypothesis itself) based on the reverse assumption: 
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using the scrambling algorithm. "Let us destroy" the multifractal structure of the time series and apply the 

method to the new scrambled time series. For example, take the stock of AT & T, which is the first in the 

tables 1,2,3. As an algorithm for scrambling, we take an algorithm based on the iAAFT technique 

(iteratively Amplitude Adjusted Fourier Transform), proposed and described in (Schreibe & Schmitz, 

2000). This scrambling algorithm is chosen because it allows to preserve the probabilistic distribution of 

the time series and its frequency spectrum (within the limits of calculation error). The error that determines 

the differences in the original spectrum and in the spectrum of the scrambled series will be determined by 

the formula: 

 ( ) ( )
1

1 ˆˆ ,
N

spec i i
i

e F S
N

ω ω
=

= −∑  (5) 

where ( )ˆ ,iF ω ( )ˆ
iS ω are the Fourier transform amplitudes of the original and scrambled series, 

this is the total number of Fourier-expansion frequencies (for a discrete Fourier transform is equal to the 

number of points of the original series). Thus, the error is the average deviation of the amplitude modules 

of the Fourier spectrum. 

 

Table 2.  The interval from 01.05.15 to 17.08.15 definition 3 
Asset MLHE 

window 
Interval, 

number of 
points 

(3.1)/(3.2) 

Signal 
threshold 

in the 
number of 

mean 
values 

(3.1)/(3.2) 

The normalized 
value of large 

motion 
(3.1)/(3.2) 

Faithful 
signals of 

MLHE 
(3.1)/RSG 

 

Faithful 
signals of 

MLHE 
(3.2)/RSG 

 

Total 
number of 

signals 
(3.1)/(3.2) 

AT&T 320 40/50 3.5/2.8 0.0021/0.0016 0.72/0.34 0.79/0.5 43/54 
Apple 320 40/40 2/2 0.0028/0.0019 0.72/0.33 0.77/0.5 83/83 
H&P 320 60/60 3.5/3.5 0.0041/0.0027 0.67/0.35 0.82/0.5 49/49 

Coca-cola 320 50/50 2.7/2.7 0.0023/0.0017 0.73/0.38 0.80/0.49 56/56 
IBM 320 30/30 2.6/2.6 0.0023/0.0015 0.60/0.38 0.76/0.49 45/45 
Intel 320 50/50 2.5/2.5 0.0035/0.0022 0.77/0.38 0.80/0.5 67/67 

Microsoft 320 40/40 3.9/3.9 0.0028/0.0018 0.78/0.36 0.88/0.53 42/42 
Google 320 40/140 3.2/3.9 0.0040/0.0066 0.57/0.36 0.76/0.53 23/19 

McDonalds 320 60/70 3.2/3.2 0.0028/0.0021 0.73/0.36 0.89/0.51 48/47 
Exxon 320 40/40 3.6/3.6 0.0024/0.0016 0.83/0.36 0.90/0.51 58/58 

Kraft Foods 320 30/30 3.1/3.1 0.0030/0.0020 0.70/0.36 0.87/0.51 23/23 
Pfizer 320 50/50 3.5/3.7 0.0026/0.0021 0.75/0.37 0.81/0.52 48/43 

Bank Of 
America 

320 30/30 4/4 0.0025/0.0018 0.7/0.36 0.8/0.47 40/40 

D&J-ind 320 70/70 3.8/2.8 0.0019/0.0012 0.75/0.32 0.90/0.49 32/32 
Gazprom 320 210/60 2.4/2.6 0.0085/0.0031 0.47/0.38 0.58/0.51 77/72 

Lukoil 320 170/170 1.9/0.9 0.0070/0.0055 0.66/0.38 0.63/0.50 59/86 
Sberbank 320 210/20 1.7/3.8 0.0118/0.0024 0.54/0.39 0.68/0.51 93/41 

RTSI index 320 190/200 2.8/2.7 0.0077/0.0066 0.62/0.38 0.72/0.50 42/43 
MTS 320 180/160 3.9/1.5 0.0093/0.0063 0.55/0.36 0.65/0.49 36/83 

 

We now apply the MLHE algorithm to the scrambled series. The results are shown in Table 4, 

«Results of the application of the MLGR algorithm for a scrambled time series based on the AT & T time 

series». 
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Table 3.  The interval from 01.05.15 to 17.08.15 definition 4 
Asset 

 
MLHE 
window 

Interval, 
number of 

points 

Signal threshold, 
in the number of 

mean values 

The normalized 
value of a large 
motion, (4.1) 

Faithful 
signals of 

MLHE 
(4.1)/RSG 

Total 
number of 

signals 
 

AT&T 320 50 1.6 5.38 0.85/0.25 72 
Apple 320 60 3.7 7.84 0.80/0.19 50 
H&P 320 50 2.3 8.35 0.76/0.18 67 

Coca-cola 320 50 2.4 5.24 0.84/0.24 60 
IBM 320 40 4 6.57 0.53/0.20 32 
Intel 320 70 2.5 8.19 0.85/0.19 68 

Microsoft 320 40 3.8 8.13 0.81/0.14 43 
Google 320 30 4 9.41 0.30/0.11 17 

McDonalds 320 60 1.7 5.52 0.73/0.19 68 
Exxon 320 60 0.8 6.06 0.88/0.25 101 

Kraft Foods 320 30 2 8.33 0.70/0.25 30 
Pfizer 320 40 3.6 5.89 0.9/0.23 48 

Bank Of 
America 

320 40 4 7.52 0.83/0.20 40 

D&J-ind 320 70 2 3.14 0.80/0.25 51 
Gazprom 320 200 1.4 8.51 0.52/0.33 94 

Lukoil 320 220 2.1 8.18 0.66/0.33 53 
Sberbank 320 190 2.7 12 0.52/0.33 67 

RTSI index 320 200 2.6 6.70 0.73/0.24 45 
MTS 320 210 3.1 12 0.46/0.30 48 

 

It can be seen that the values of the proportions of the correct signals for the given series were 

practically equal to the values obtained for the RSG and much lower than the values obtained earlier for 

the original AT & T series. All values are slightly higher than for the RSG due to the optimization algorithm. 

It can be shown that each of the values does not exceed the limits of the confidence interval. For example, 

for the definition (2.2), a confidence interval with a confidence level of 95% is 0.9, so a value of 0.56 falls 

into this interval, and therefore cannot be considered statistically significant. For other values, the 

confidence interval is even greater, since these values are calculated on a smaller number of signals. From 

the results obtained it can be concluded that the financial time series have multifractal structure and method 

MLHE stops working for scrambled time series. 

 

Table 4.  Results of the application of the MLGR algorithm for a scambled time series based on the 
AT&T time series 

Definition Interval, 
number of 

points 

Signal 
threshold   in 
the number of 
average values 

 

The proportion of 
the correct signals 
of the MLHE for 

the scrambled time 
series 

The proportion 
of correct RSG 

signals 

The proportion 
of correct 

MLHE signals 
for AT & T 

The total 
number of 

signals for the 
scrambled series 

2.1 180 1.1 0.44 0.35 0.81 69 
2.2 220 0.2 0.56 0.5 0.90 127 
3.1 210 0.2 0.43 0.34 0.72 127 
3.2 90 3.7 0.55 0.5 0.79 18 
4.1 210 3.0 0.45 0.25 0.85 28 

The most important and almost obvious result observed in all the tables for all selected time series 

(especially for the US market) is the explicit statistical difference between the frequency of the correct 

signals of the MLHE and the frequency of the correct signals obtained by the random signal generator 

(RSG).  
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The optimal values of the MLHE window are the same for all analyzed time series. In general, this 

is due to the rough optimization of this parameter (as already described above due to the speed of the 

program), but somehow these values are within a small interval [290,350] points relative to the entire range 

for the window w   

The optimal interval values ε  for different series of the US market and the Russian market 

(individually) lie in a small numerical interval relative to the entire range of values ε , which, on the one 

hand, speaks of the non-random work of the MLHE method, and on the other, the overall internal structure 

of the time series of the US market and the Russian market (separately).  

The optimal values of the signal threshold depend on the initial definitions and within the same 

definition are also in a narrow numerical interval relative to the entire optimization interval. If we compare 

the definitions (2.1) / (2.2) and (3.1) / (3.2), then in each definition group, the values obtained from the 

definitions (x.1) (based on mean values) are always lower than (x.2) (based on median values). This is 

clearly seen from the values of the proportions of the correct signals for the RSG, which for (x.1) are on 

the average 0.36, and for (x.2) they are 0.5. This is explained by the fact that the average values are shifted 

to a larger side relative to the median, which in turn is explained by the greater sensitivity of the average to 

"out layers", i.e. to very rare, large values, to which the median is not sensitive.  It is worth noting the results 

obtained on the basis of the definition (4.1) based on volatility, if we compare the probabilities of the correct 

signals of the MLHE with the RSG, it becomes clear that with respect to this definition the method gives the 

best results.  Another important and interesting result is observed when comparing the shares of American 

and Russian markets. It is easy to see that the optimal parameters for these groups vary widely and are 

centered around values that are far from each other. It is also clear that the probability values of the correct 

signals for the Russian market are on average much lower than for the American market. The reason for this 

difference can be several factors at once. First, the presence in the US market of more modern trading 

technologies, for example, HFT. HFT is an abbreviation for High-frequency trading, i.e. trading at a very 

high frequency, several transactions per second. And the development of communications, which allows the 

American market to react more quickly to any information, in particular, this can be explained a much shorter 

time interval .ε Secondly, the presence of a larger number of market participants, which on average provides 

more traders on each investment horizon. If in detail, it is obvious that every player on the market has one or 

more investment horizons, on which trader conducts his trade. Since in real trading the number of traders is 

limited and the number of investment horizons is practically unlimited, then some of the investment horizons 

will be empty or almost empty, and the larger the number of traders, the denser the possible investment 

horizons will be filled, which brings the real distribution of traders horizontally closer to the multifractal one. 

On the other hand, an increase in the number of players leads to more transactions per unit of time, and, 

consequently, leads to an increase in volatility. Thus, the multifractal approach on such series should 

definitely work better, which is confirmed by the high probability values for the US market. For the Russian 

market, the most traded and liquid instrument is the futures on the RTSI index, which in these tables among 

Russian instruments shows the best results. Third, the US market is more independent in the context of direct 

state intervention on price regulation. For example, at the very beginning of the Russian crisis of 2014, the 

Central Bank of Russia restrained the growth of the dollar artificially, creating demand for the ruble. It is 
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obvious that with such interference, the natural processes occurring on the market are violated, which leads 

to a violation of the multifractal structure of the market. 

4. Conclusions 

In this study, several definitions of the concept of large motion were used, on the basis of which the 

corresponding calculations of the probability of the correct (according to the definition) forecast of the 

dynamics of the time series were made. This method showed good performance, several times exceeding 

the probabilities of the correct signals received by the generator of random signals, which are necessary for 

an objective evaluation of the effectiveness of the method. The best results are obtained with respect to the 

definition (3.1). In practice, the average value of volatility is used to form the price of options, i.e. MLGP 

can be considered a good tool for option trading. Also valuable results are differences in the values of 

optimal parameters and probabilities of correct signals for instruments of American and Russian financial 

markets. In addition, based on the results obtained, one more important conclusion can be drawn: the greater 

the liquidity of the instrument, the more the number of players trades in this instrument, the better the 

performance of the MLGR (which is in some contradiction with the theory of an effective market). 
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