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Abstract 

 
Often solving a problem / exercise in a certain algebraic structure is quite difficult. That is why it is 
sometimes necessary to transfer the respective problem / exercise into an isomorphic structure with the 
given one and where it can be solved / studied more easily. But the problem of determining isomorphic 
algebraic structures at one time is quite difficult for students / teachers as well. In this paper we are 
proposing the construction of some rings isomorphic to the ring of integers numbers Z, on different 
subsets of the set Z. To begin with, we will see that if m is a integer number, then on the set of multiples 
of m, so on the set m⋅Z we can define such a structure. On the other hand, it is known that the set of 
natural numbers, N, does not form a ring structure with the usual operations of addition and multiplication 
of numbers. But, naturally, the question arises: On the set of N natural numbers, two internal operations 
can not be defined so that they give N an isomorphic ring structure with Z? We will see that the answer to 
this question is positive; we can define more such ring structures on any sets of natural numbers of the 
form m⋅N, where m is a natural number. In conclusion, we will show that for any natural number m, the 
sets m⋅N and m⋅Z can become isomorphic commutative rings with the ring Z.  
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1. Introduction 

As I have shown in Vălcan (2013), Mathematics is an object / discipline of education that is 

studied throughout schooling. Due to the complexity and open nature of Mathematics, its study cannot 

end at any level of learning. The multiple transformations that society has, the implications of 

Mathematics in all economic and social spheres, impose as a stringent necessity the best mathematical 

training for every citizen. However, education through Mathematics, a component part of education, must 

be done in accordance with both the transformations in society and the systemic, interactive nature of the 

teaching principles. That is why it is necessary to integrate in a unitary conception the different ways of 

perfecting all components of the educational process, in interrelation and their reporting to the finality of 

the whole process (education). Therefore, the mathematical education should be improved in the context 

of the improvement of the other components of this process, especially of the related ones.  

The ways of conceiving and presenting the scientific knowledge systems of Mathematics, or their 

components, included in the curricula and translated into textbooks, collections, teaching guides, etc., 

present numerous errors. This is due to the observance of some malfunctioning structures built through 

school curricula, the faulty way of presenting the components of this knowledge, objectives not centered 

on the major outcomes of mathematical education, and more. The most important and frequent defect in 

the presentation of this knowledge is that it is not clear what elements of notional content are to be 

attributed to the study directly in the didactic process, i.e. the possibility of being more clear and logical 

to be presented by the teacher and more easily and more enjoyable to learn by pupils / students. 

What is the possible solution to these fundamental problems of mathematical education, which in 

didactic terms would be formulated as interrogations such as: 

 Is it necessary and possible to „form” a new image about Mathematics - science? 

 From what premises should this new image start? 

 How would this new image be transposed into the mathematical education and what would it 

change in the course of the didactic process through which it manifests itself? 

 It can be made ordering the knowledge of Mathematics, in particular of notional content, so that it 

is accepted by the community of teachers? 

 How would you be motivated and helped pupils to acquire better and more enjoyable than this 

discipline so far, by such a way of putting it of the Mathematics Learning Problem? 

We have customized these more general questions into a specific, more substantive set of our 

research: 

 What is the composition and the possible structure of an „informational matrix” specific to the 

notional content of Mathematics, defining the study of this science from the gymnasium to the 

university level? 

 How would this „informational matrix” transpire in school and university curricula and in the 

explicit and / or implicit discourse of teachers? 

 What element of this structure is essential in the internal reconstruction, after a new didactic logic, 

of this school discipline? 

Here, we have outlined, so, a first problem to be researched, that of the scientific content of 

Mathematics studied in the education system, more specifically the search and characterization of the 
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essential element of the notional content, whose understanding depends on the appropriation of the other 

content components, as well as their application (Astolfi & Develey, 1989). 

Because the whole mathematical notional content presented in school is organized algebraically 

structural, in fact, it is about forming a new image of the mathematical concepts of isomorphic algebraic 

structures by: 

 discarding the influences of an exclusive materialistic philosophy; 

 their study by applying the new psychological theories to the formation of mathematical notions; 

 the formation of a new didactic logic around these concepts, because: 

o is important in forming an image of reality, 

o has a fundamental position in the construction of the knowledge system of Mathematics, 

o has a justification role in the formation of scientific / mathematical language, 

o is subject / object of knowledge and criterion in compliance the logic of science in general, 

and the logic of Mathematics in particular, 

o interdisciplinary implications which he has in acquisition scientific concepts in other areas 

are essential. 
   

2. Problem Statement 

Analyzing students' results in written, olympiad or admission contests, you find it easy to conclude 

that they have some difficulty in understanding some components of mathematical notional content. In 

this paper we will present ways of detecting the nature and causes of difficulties encountered by students 

in the teaching - learning of Mathematics, with increased emphasis on isomorphic algebraic structures. 

Not a few times students encounter difficulties in learning these notions due to at least the 

following causes: 

 the deficiencies of the analytical programs in force; 

 poor presentation of notional content in textbooks; 

 lips of problem collections, appropriate to the respective component (s) of the notional content; 

 poor teacher training; 

 poor presentation of the scientific content by teachers in class (Vălcan, 1997). 

Concerning the theme suggested by the title of this paper, it should be noted that, so far, disparate 

articles were written only on certain components of the scientific content, in which their epistemic 

character prevailed. It was found that the components of the notional content were not grouped, by 

domains and / or themes, thus integrated into a knowledge system, much less by groups of related topics. 

In general, teachers form their own opinions on how to teach scientific content, based on more or 

less well-founded experiences, and having as sources of information only school programs and textbooks. 

The number of studies emphasizing the methodological character of the scientific content processing is 

far too small compared to the many solutions offered by this mode of treatment, which is also based on 

the difficulties faced by students in the learning process. The causes that generate these difficulties, their 

nature, have been found so far, empirically, only from the observations made at student exams and / or 

their written works. The proposed solutions were the result of more theoretical analyzes. Attempts to 

solve concrete, following detailed pedagogical experiences, were very rare. We should also mention here 
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that most of the studies so far in this field, from Piaget (1970) to Gagné (1975) and the team led by 

Ausubel (1968), have dealt with the issue of acquiring notions by subjects in the context of research 

laboratory, and not by the pupils, in the didactic context, as the teaching - learning process takes place. 

Also, the development of didactic materials, programs and / or textbooks was moreover the result of some 

theoretical studies; generally, these were developed on the basis of experimental research as follows: 

theoretical documentation in cognitive psychology + pilot experimental research (theoretical treatment) + 

development of solutions (concretization on support materials).  

It is noted, the need to investigate the difficulties faced by students in the context of the systemic 

approach of mathematical notional content, as well as its processing, in order to have a more 

comprehensive view on it. 

A study of the difficulties encountered by students in the Mathematics training process must take 

into account the whole complexity of this process. The causes of difficulties can be found at the level of 

any component of the learning process. From this perspective we can identify: 

 difficulties due to notional content, 

 difficulties due to a misconception about the finality of the training process, 

 difficulties due to the strategy used by teachers during teaching hours, 

 difficulties due to poor assessment of pupils' knowledge, 

 difficulties due to the communication between the teacher and the student (Vălcan, 1997). 

It is noted that while the first category contains objective causes related to the specificity of 

Mathematics as a science and discipline of education, the last four categories of difficulties presented 

above highlight their possible causes in the study of Mathematics, factors related to human components 

(teacher - student), of the educational process. 

Any investigation of the difficulties faced by students in teaching - learning mathematics, should 

lead to the discovery of answers at least to the following questions: 

 to what extent did the mathematical concepts have been made wrong? 

 how did these students not understand these components? 

 why it is necessary to change the behavior of teachers and pupils in teaching - learning 

Mathematics? 

 what would this change be in the behavior of the teacher and student? 

Here's what it is the context in which the theme of this work falls, starting from the ideas of Vălcan 

(2017) and recalled in Vălcan (2019). 

   

3. Research Questions 

In our research we will try to find answers to the following questions: 

-There are structures of commutative ring defined on sets of integers and which are isomorphic to 

the commutative ring of integers, (Z,+,⋅)? 

-How can these structures be identified?   
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4. Purpose of the Study 

Therefore, we answered the two questions in Paragraph 3. Thus, for any number m, p∈N∗ there are 

two pairs of laws of internal composition on the sets m⋅Z and p⋅N, let's say „⊕” and „⊗”, respectively „∆” 

and „⊥”, so that (m⋅Z,⊕,⊗) and (p⋅N,∆,⊥) become commutative rings isomorphic to the ring (Z,+,⋅).   

Concretely, on the set of integers multiples of 3, 3⋅Z and on the set of natural multiples of 5, 5⋅N 

we can define two pairs of laws of internal composition so that let's say „⊕” and „⊗”, respectively „∆” 

and „⊥”, so that (3⋅Z,⊕,⊗) and (5⋅N,∆,⊥) become commutative rings isomorphic to the ring (Z,+,⋅). 
  

5. Research Methods 

Let m be a natural number, n≥1, N – the set of natural numbers and the set: 

m⋅Z={m⋅x | x∈Z}, 

of the integer multiples of m. Then the sets N and m⋅Z are equipotent and write N ∼ m⋅Z because there is 

a bijective map from N to m⋅Z: 

N →g  Z →f  m⋅Z, 

where: 

g(x)=










+
− odd is x if ,

2
1x

even is x if ,         
2
x

  and   f(x)=m⋅x, 

are bijective functions. So, 

h : N → m⋅Z,      h=f◦g, 

that this: 

h(x)=










+⋅
−

⋅

odd is x if ,
2

)1x(m

even is x if ,           
2

xm

, 

is a bijection and:  

 h-1 : m⋅Z → N,      h-1(m⋅x)=




<−⋅−
≥⋅

0 xif ,1x2
0 xif ,        x2

. 

The first fundamental result in this paragraph is: 

Theorem 5.1: For every number m∈N∗, there are two laws of internal composition, let's say „⊕” and 

„⊗”, on the set m⋅Z, such that (m⋅Z,⊕,⊗) to become is a commutative ring isomorphic to the ring (Z,+,⋅). 

Proof: We transfer the ring structure from Z to m⋅Z. So, according to Vălcan (2017),. 

m⋅x⊕m⋅y=f(f-1(m⋅x)+f-1(m⋅y))=f(x+y)=m⋅(x+y)=m⋅x+m⋅y,                                                         (5.1) 

m⋅x⊗m⋅y=f(f-1(m⋅x)⋅f-1(m⋅y))=f(x⋅y)=m⋅(x⋅y),                                                                             (5.2) 

emZ=f(0)=m⋅0=0   and    -(m⋅x)=m(-x),                        (5.3) 

and: 

1mZ=f(1)=m⋅1=m   and    (m⋅x) 1
Zm

−
⋅ =f 








x
1 =

x
m .           (5.4) 
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Therefore, accroding to Vălcan (2017), (m⋅Z,⊕,⊗) is a commutative ring isomorphic to the ring 

(Z,+,⋅), by the function f, and the only invertible elements in the ring m⋅Z are numbers: m⋅1 and m⋅(-1), ie 

m and –m. 

Observe that, for every x, y∈Z, 

f(x+y)=m⋅(x+y)=f(x)⊕f(y)  and   f(x⋅y)=m⋅(x⋅y)=f(x)⊗f(y).     (5.5) 

Remark 5.2: For m=1, the above application f becomes the identity automorphism 1Z of the ring (Z,+,⋅). 

The next fundamental result is:  

Theorem 5.3: For every number m∈N∗, there are two laws of internal composition, let's say „∗” and 

„•”, on the set N, such that (N,∗,•) to become is a commutative ring isomorphic to the ring (m⋅Z,⊕,⊗). 

Proof: We transfer the ring structure from m⋅Z to N, using the function h-1. Hence, according to Vălcan 

(2017), obtain the two composition laws „∗” and „•” on N. Let be x and y from N. For defining the law 

„∗”, we distinguish the following cases: 

Case 1: x and y are even. Then: 

x∗y=h-1(h(x)⊕h(y))=h-1 





 ⋅

+
⋅

2
xm

2
xm =h-1 






 +⋅

2
)yx(m =x+y.                                                (5.6) 

Case 2: x and y are odd. Then: 

x∗y=h-1(h(x)⊕h(y))=h-1 





 +⋅−

+
+⋅−

2
)1y(m

2
)1x(m =h-1 






 −−−⋅

2
)2yx(m  

      =-2⋅ 





 −−−⋅

2
)2yx(m -1=x+y+1.                                                                                          (5.7) 

Case 3: x is even and y is odd. Then: 

x∗y=h-1(h(x)⊕h(y))=h-1 





 +⋅−

+
⋅

2
)1y(m

2
xm =h-1 






 −−−⋅

2
)1yx(m  

      =




+<+−
+≥−−

1y xif ,  yx
1y xif ,1yx

.                                                                                                          (5.8) 

Case 4: x is odd and y is even. Then: 

x∗y=h-1(h(x)⊕h(y))=h-1 





 ⋅

+
+⋅−

2
ym

2
)1x(m =h-1 






 −+−⋅

2
)1yx(m  

      =




+<−
+≥−+−

1xy if ,        yx
1xy if ,1yx

.                                                                                                       (5.9) 

Therefore, according to the equalities (5.6) - (5.9), for every x, y∈N, 

x∗y=
















+<
+≥+
+<+
+≥

++
+

1xy and even, isy  odd, is x if ,y       -x
 1xy and even, isy  odd, is x if 1,-yx-
 1y xand odd, isy  even, is x if ,y    x-
 1y xand odd, isy  even, is x if ,   1-y-x

odd arey  and x if ,1yx
even arey  and x if ,     yx

.                                                                 (5.10) 

Now, for defining the law „•”, we distinguish the following cases: 

Case 1: x and y are even. Then: 

https://doi.org/
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x•y=h-1(h(x)⊗h(y))=h-1 





 ⋅

⊗
⋅

2
xm

2
xm =h-1 






 +⋅

2
)yx(m =

2
yx ⋅ .                                            (5.11) 

Case 2: x and y are odd. Then: 

x•y=h-1(h(x)⊗h(y))=h-1 





 +⋅−

⊗
+⋅−

2
)1y(m

2
)1x(m =h-1 






 +⋅+⋅

4
)1y()1x(m  

      =
2

)1y()1x( +⋅+ .                                                                                                                   (5.12) 

Case 3: x is even and y is odd. Then: 

x•y=h-1(h(x)⊗h(y))=h-1 





 +⋅−

⊗
⋅

2
)1y(m

2
xm =h-1 






 +⋅−⋅

4
)1y()x(m =

2
)1y(x +⋅ -1.             (5.13) 

Case 4: x is odd and y is even. Then: 

x•y=h-1(h(x)⊗h(y))=h-1 





 ⋅

⊗
+⋅−

2
ym

2
)1x(m =h-1 






 +⋅−⋅

4
)1y()y(m =

2
)1x(y +⋅ -1.             (5.14) 

Therefore, according to the equalities (5.11) and (5.14), for every x, y∈N, 

x•y=

















+⋅

+⋅

+⋅+

⋅

even isy  and odd is x if ,     1-
2

)1x(y

odd isy  andeven  is x if ,     1-
2

)1y(x

odd arey  and x if ,
2

)1y()1x(

even arey  and x if ,                
2

yx

.                                                                         (5.15) 

On the other hand, 

eN=h-1(em⋅Z)=h-1(m⋅0)=0                                                                                                              (5.16) 

and   

-xN=h-1(-h(x))=

















 +⋅







 ⋅
−

−

−

 odd is x if ,
2

)1x(mh

even is x if,     
2

xmh

1

1

=




+
−

odd is x if,1x
even is x if ,1x

,                                           (5.17) 

and: 

1N=h-1(1m⋅Z)=h-1(m⋅1)=2                                                                                                              (5.18) 

and  

x-1=h-1 







⋅ xm
1

=










<−⋅−

≥⋅

0 xif ,1
x
12

0 xif ,        
x
12

.                                                                                         (5.19) 

Therefore, according to Vălcan (2017), (N,∗,•) is a commutative ring isomorphic to the ring 

(m⋅Z,⊕,⊗), by bijective function h-1, and the only invertible elements in the ring N are:  

1=h-1(-m)=h-1(m⋅(-1))   and    2=h-1(m)=h-1(m⋅1).              (5.20) 

Now let's show that, indeed, the function h-1 is an isomorphism between the two rings. For this, we 

first notice that, for every x, y∈Z, 
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h-1(m⋅x∗m⋅y)=h-1(m⋅(x+y))=




<+−+⋅−
≥++⋅

0y xif ,1)yx(2
0y xif ,        )yx(2

                                                         (5.21) 

and 

h-1(m⋅x•m⋅y)=h-1(m⋅(x⋅y))=




<⋅−⋅⋅−
≥⋅⋅⋅

0y xif ,1)yx(2
0y xif ,        )yx(2

.                                                            (5.22) 

For the determination of h-1(m⋅x)∗h-1(m⋅y) we distinguish the following cases: 

Case 1: h-1(m⋅x) and h-1(m⋅y) are even. Then: 

h-1(m⋅x)∗h-1(m⋅y)=m⋅x+m⋅y=m⋅(x+y).                                                                                        (5.23) 

Case 2: h-1(m⋅x) and h-1(m⋅y) are odd. Then: 

h-1(m⋅x)∗h-1(m⋅y)=h-1(m⋅x)+h-1(m⋅y)+1=-2⋅x-1-2⋅y-1+1=-2⋅(x+y)-1.                                        (5.24) 

Case 3: h-1(m⋅x) is even and h-1(m⋅y) is odd. Then: 

h-1(m⋅x)∗h-1(m⋅y)=






+<+−

+≥−−
−−−

−−−

1(y)h(x)h if ,   )y(h)x(h

1(y)h(x)h if ,1)y(h)x(h
11-11

1-111
 

           =




<+−+⋅−
≥++⋅

0y xif ,1)yx(2
0y xif ,        )yx(2

.                                                                      (5.25) 

Case 4: h-1(m⋅x) is odd and h-1(m⋅y) is even. Then: 

h-1(m⋅x)∗h-1(m⋅y)=






+<−

+≥−+−
−−−

−−−

1(x)h(y)h if ,         )y(h)x(h

1(x)h(y)h if ,1)y(h)x(h
11-11

1-111
 

             =




<+−+⋅−
≥+⋅+⋅

0y xif ,1)yx(2
0yx if ,        )yx(2

.                                                                     (5.26) 

Therefore, according to the equalities (5.21) and (5.23) - (5.26), for every x, y∈Z, 

h-1(m⋅x∗m⋅y)=h-1(m⋅x)∗h-1(m⋅y).                                                                                                (5.27) 

Now, for the determination of h-1(m⋅x)•h-1(m⋅y) we distinguish the following cases: 

Case 1: h-1(m⋅x) and h-1(m⋅y) are even. Then: 

h-1(m⋅x)•h-1(m⋅y)=
2

)ym(h)xm(h 11 ⋅⋅⋅ −−
=2⋅(x⋅y).                                                                    (5.28)  

Case 2: h-1(m⋅x) and h-1(m⋅y) are odd. Then: 

h-1(m⋅x)•h-1(m⋅y)=
2

)1)y(h()1)x(h( 11 +⋅+ −−
=2⋅(x⋅y).                                                               (5.29) 

Case 3: h-1(m⋅x) is even and h-1(m⋅y) is odd. Then: 

h-1(m⋅x)•h-1(m⋅y)=
2

)1)y(h()x(h 11 +⋅ −−
-1=-2⋅(x⋅y)-1.                                                               (5.30) 

Case 4: h-1(m⋅x) is odd and h-1(m⋅y) is even. Then: 

h-1(m⋅x)•h-1(m⋅y)=
2

)1)x(h()y(h 11 +⋅ −−
-1=-2⋅(x⋅y)-1.                                                               (5.31) 

Therefore, according to the equalities (5.22) and (5.28) - (5.31), for every x, y∈Z, 

h-1(m⋅x•m⋅y)=h-1(m⋅x)•h-1(m⋅y).                                                                                                 (5.32) 
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From the equalities (5.27) and (5.32) it follows that the function h-1 is an isomorphism of rings and 

thus the rings (N,∗,•) and (m⋅Z,⊕,⊗) are isomorphic. 

Remark 5.4: Also, the ring (N,∗,•) is isomorphic to the ring (Z,+,⋅), by isomorphism g. 

Remark 5.5: For m=1, from Theorem 5.2, obtain the ring structure on N, transferred from the ring 

(Z,+,⋅), which is the same as that transferred from the ring (m⋅Z,⊕,⊗), for every m∈N∗. 

In fact, we can say that, for every m, n, p, q∈N∗, we have the following commutative diagram, of 

commutative rings: 

   Z                               m⋅Z                                n⋅Z 
 
                                                                                                                                                     (5.33) 
 
   N                                p⋅N                                q⋅N, 

where, 

u : m⋅Z → m⋅Z,  v : N → p⋅N,  t : p⋅N → q⋅N,  w : m⋅Z → p⋅N,  

are defined by: 

 for every x∈Z, u(m⋅x)=n⋅x,  

 for every x∈N, v(x)=p⋅x,  

 for every x∈N, t(p⋅x)=q⋅x,  

 for every x∈Z, w(m⋅x)=p⋅g-1(x), 

and, 

v◦g-1 : Z → p⋅N,  t◦w : m⋅Z → q⋅N,  w◦u-1 : n⋅Z → p⋅N,    

are defined by: 

 for every x∈Z, (v◦g-1)(x)=v(g-1(x))=




<+⋅⋅−
≥⋅⋅

0 xif ),1x2(p
0 xif ,           xp2

,                                                   (5.34) 

 for every x∈Z, (t◦w)(m⋅x)=t(w(m⋅x))=t(p⋅g-1(x))=q⋅g-1(x)=




<+⋅⋅−
≥⋅⋅

0 xif ),1x2(q
0 xif ,           xq2

,               (5.35)  

 for every x∈Z, (w◦u-1)(n⋅x)=w(u-1(n⋅x))=w(m⋅x)=p⋅g-1(x)=




<+⋅⋅−
≥⋅⋅

0 xif ),1x2(p
0 xif ,           xp2

.               (5.36) 

The last fundamental result of this paper is:  

Theorem 5.6: For every number p∈N∗, there are two laws of internal composition, let's say „∆” and 

„⊥”, on the set p⋅N, such that (p⋅N,∆,⊥) to become is a commutative ring isomorphic to the ring (Z,+,⋅). 

Proof: We transfer the ring structure from Z to p⋅N, using the bijection function:  

k=v◦g-1 : Z → p⋅N,  

where, according to the equality (5.34),for every x∈Z,  

k(x)=(v◦g-1)(x)=v(g-1(x))=




<+⋅⋅−
≥⋅⋅

0 xif ),1x2(p
0 xif ,           xp2

,                                                                  (5.34′) 

and, 

k-1=g◦v-1 : p⋅N → Z,  

where, for every x∈N, 
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k-1(p⋅x)=g(x)=










+
− odd is x if ,

2
1x

even is x if ,        
2
x

,                                                                                           (5.37) 

since, 

v-1 : p⋅N → N,  

where, for every x∈N, 

v-1(p⋅x)=x. 

Hence, according to Vălcan (2017), obtain the two composition laws „∆” and „⊥” on N. Let be x 

and y from N and let be: 

a=p⋅x     and    b=p⋅y  

from p⋅N. For defining the law „∆”, we distinguish the following cases: 

Case 1: x and y are even. Then: 

a∆b=k(k-1(p⋅x)+k-1(p⋅y))=k 





 +

2
y

2
x =k 






 +

2
yx =p⋅(x+y)=a+b.                                                (5.38) 

Case 2: x and y are odd. Then: 

a∆b=k(k-1(p⋅x)+k-1(p⋅y))=k 





 +−

+
+−

2
)1y(

2
)1x( =k 






 −−−

2
2yx  

      =-p⋅ 





 +

−−−
⋅ 1

2
2yx2 =p⋅(x+y+1)=a+b+p.                                                                        (5.39) 

Case 3: x is even and y is odd. Then: 

a∆b=k(k-1(p⋅x)+k-1(p⋅y))=k 





 +−

+
2

)1y(
2
x =k 






 −−

2
1yx  

   =




+<+−⋅
+≥−−⋅

1y xif ,   )yx(p
1y xif ),1yx(p

=




+<+−
+≥−−

pba if ,   ba
pba if ,pba

.                                                          (5.40) 

Case 4: x is odd and y is even. Then: 

a∆b=k(k-1(p⋅x)+k-1(p⋅y))=k 





 +

+−
2
y

2
)1x( =k 






 −+−

2
1yx  

       =




+<−⋅
+≥−+−⋅

1xy if ,        )yx(p
1xy if ),1yx(p

=




+<−
+≥−+−

pab if ,         ba
pab if ,pba

.                                                   (5.41) 

Therefore, according to the equalities (5.38) - (5.41), for every a, b∈p⋅N,  

a=p⋅x     and    b=p⋅y  

with x, y∈N: 

a∆b=
















+<
+≥+
+<+
+≥

++
+

pab andeven  isy  odd, is x if ,        b-a
 pab andeven  isy  odd, is x if p,-ba-
 pba and odd isy  even, is x if ,     ba-
 pba and odd isy  even, is x if ,   p-b-a

odd, arey  and x if ,pba
even arey  and x if ,      ba

.                                                                 (5.42) 

For defining the law „⊥”, we distinguish the following cases: 
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Case 1: x and y are even. Then: 

a⊥b=k(k-1(p⋅x)⋅k-1(y))=k 





 ⋅

2
y

2
x =k 






 ⋅

4
yx =

2
)yx(p ⋅⋅ =

p2
ba
⋅
⋅ .                                                 (5.43) 

Case 2: x and y are odd. Then: 

a⊥b=k(k-1(p⋅x)+k-1(p⋅y))=k 





 +−

⋅
+−

2
)1y(

2
)1x( =k 






 +⋅+

4
)1y()1x(  

       =
2

)1y()1x(p +⋅+⋅ =
p2

)pb()pa(
⋅

+⋅+ .                                                                                  (5.44) 

Case 3: x is even and y is odd. Then: 

a⊥b=k(k-1(x)+k-1(y))=k 





 +⋅−

⋅
⋅

2
)1y(p

2
xp =h-1 






 +⋅−

4
)1y()x(  

       =
2

)1y(xp +⋅⋅ -p=
p2

)pb(a
⋅
+⋅ -p.                                                                                           (5.45) 

Case 4: x is odd and y is even. Then: 

a⊥b=k(k-1(p⋅x)+k-1(p⋅y))=k 





 ⋅

⋅
+−

2
yp

2
)1x( = k 






 +⋅−

4
)1x()y(  

       =
2

)1x(yp +⋅⋅ -p=
p2

)pa(b
⋅
+⋅ -p.                                                                                           (5.46) 

Therefore, according to the equalities (5.43) - (5.46), for every a, b∈p⋅N,  

a=p⋅x     and    b=p⋅y  

with x, y∈N: 

a⊥b=


















⋅
+⋅
⋅
+⋅
⋅

+⋅+
⋅
⋅

even isy  and odd is x if ,    p-
p2

)pa(b

odd isy  andeven  is x if ,    p-
p2

)pb(a

odd arey  and x if ,
p2

)pb()pa(

even arey  and x if ,                 
p2
ba

.                                                                        (5.47) 

On the other hand, 

ep⋅N=k(eZ)=k(0)=p⋅0=0                                                                                                                (5.48) 

and   

-ap⋅N=k(-k-1(p⋅x))=








+⋅
≥−⋅

=

odd is x if ,pxp
 2 xandeven  is x if ,pxp

0 xif ,          0
=








+
≥−

=

odd is x if ,pa
 2 xandeven  is x if ,pa

0a if ,      0
,                 (5.49) 

and: 

1p⋅N=k(1)=2⋅p                                                                                                                               (5.50) 

and    

a 1
Np

−
⋅ =k 








− )a(k
1
1 =k 









⋅− )xp(k
1

1 . 
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But, 

)xp(k
1

1 ⋅−
=










+
− odd is x if ,

1x
2

even  is x if ,        
x
2

. 

So,  

)xp(k
1

1 ⋅−
∈Z           if and only if  x∈{1,2}. 

Therefore, according to Vălcan (2017), (p⋅N,∆,⊥) is a commutative ring isomorphic to the ring 

(Z,+,⋅), by bijective function k, and the only invertible elements in the ring N are:  

p=k(-1)     and     2⋅p=k(1).               (5.51) 

Now let's show that, indeed, the function k is an isomorphism between the two rings. For this, we 

first notice that, for every x, y∈Z, 

k(x+y)=




<+−+⋅⋅−
≥++⋅⋅

0y xif ,p)yx(p2
0y xif ,        )yx(p2

                                                                                    (5.52) 

and 

k(x⋅y)=




<⋅−⋅⋅⋅−
≥⋅⋅⋅⋅

0y xif ,p)yx(p2
0y xif ,        )yx(p2

.                                                                                        (5.53) 

Now we determine the value of k(x)∆k(y). According to the above, we obtain: 

k(x)∆k(y)=
















+<≥<
+≥≥<+
+<<≥+
+≥<≥

<<++
≥≥+

p)x(kk(y) and 0y 0, xif ,         k(y)-k(x)
 p)x(kk(y) and 0y 0, xif p,-)y(kk(x)-
 p)y(kk(x) and 0y 0, xif ,     )y(kk(x)-
 p)y(kk(x) and 0y 0, xif ,    p-k(y)-k(x)

0,y and 0 xif ,p)y(k)x(k
0andy 0 xif ,      )y(k)x(k

 

    =
















<+<≥+⋅⋅−
≥+≥<+⋅⋅
<+<≥+⋅⋅−
≥+<≥+⋅⋅

<<−+⋅⋅−
≥≥+⋅⋅

 0y xand 0y 0, xif , p-)yx(p2
0y xand 0y 0, xif ,        )yx(p2

 0y xand 0y 0, xif , p-)yx(p2
 0y xand 0y 0, xif ,        )yx(p2

0,y and 0 xif ,p)yx(p2
0y and 0 xif ,        )yx(p2

=




<+−+⋅⋅−
≥++⋅⋅

0y xif ,p)yx(p2
0y xif ,        )yx(p2

.          (5.54) 

Therefore, according to the equalities (5.52) and (5.54), for every x, y∈Z, 

k(x+y)=k(x)∆k(y).                                                                                                                       (5.55) 

Now we determine the value of k(x)⊥k(y). According to the above, we obtain: 

k(x)⊥k(y)=


















⋅
+⋅

⋅
+⋅

⋅
+⋅+

⋅
⋅

even isy  and odd is x if ,         
p2

)p)x(k()y(k

odd isy  andeven  is x if ,         
p2

)p)y(k()x(k

odd arey  and x if ,
p2

)p)y(k()p)x(k(

even arey  and x if ,                 
p2

)y(k)x(k
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              =











≥<⋅⋅⋅
<≥⋅⋅⋅
<<⋅⋅⋅
≥≥⋅⋅⋅

0y and 0 xif p,-y)(xp2-
0y and 0 xif p,-y)(xp2-

0y and 0 xif ,      y)(xp2
0y and 0 xif ,      y)(xp2

=




<⋅⋅⋅⋅
≥⋅⋅⋅⋅

0y xif p,-y)(xp2-
0y xif ,      y)(xp2

.                        (5.56) 

Therefore, according to the equalities (5.53) and (5.56), for every x, y∈Z, 

k(x⋅y)=k(x)⊥k(y).                                                                                                                        (5.57) 

From the equalities (5.55) and (5.57) it follows that the function k is an isomorphism of rings and 

thus the rings (p⋅N,∆,⊥) and (Z,+,⋅) are isomorphic. 

At the end of this paragraph, two further remarks are required: 

Remark 5.7: For p=1, from Theorem 5.6, obtain the ring structure on N, transferred from the ring 

(Z,+,⋅), which is the same as that obtained in Remark 5.5. 

Remark 5.8: For every p∈N∗, the two internal operations, „∆” and „⊥”, on the set p⋅N, such that 

(p⋅N,∆,⊥) to become a commutative ring can also be transferred from the ring (m⋅Z,⊕,⊗), via the w 

function. Thus these two rings (p⋅N,∆,⊥) and (m⋅Z,⊕,⊗) are isomorphic. 
 

6. Findings 

Therefore, we answered the two questions in Paragraph 3. Thus, for any number m, p∈N∗ there are 

two pairs of laws of internal composition on the sets m⋅Z and p⋅N, let's say „⊕” and „⊗”, respectively „∆” 

and „⊥”, so that (m⋅Z,⊕,⊗) and (p⋅N,∆,⊥) become commutative rings isomorphic to the ring (Z,+,⋅). 

Concretely, on the set of integers multiples of 3, 3⋅Z and on the set of natural multiples of 5, 5⋅N 

we can define two pairs of laws of internal composition so that let's say „⊕” and „⊗”, respectively „∆” 

and „⊥”, so that (3⋅Z,⊕,⊗) and (5⋅N,∆,⊥) become commutative rings isomorphic to the ring (Z,+,⋅).   
 

7. Conclusion 

It is known that, for every n∈N∗, the set of matrices of order n: 

Ln={x⋅In | x∈Z}⊂Mn(Z), 

together with the usual addition and multiplication of the matrices, form a (commutative) ring isomorphic 

to the ring (Z,+,⋅) – the verification is immediate. In conclusion, concidering those proven in Vălcan 

(2017) and those mentioned above, we can say that any integer number (in particular, any natural 

number) can be represented as an element of any set of numbers: m⋅Z, and p⋅N, with m and p∈N∗, but 

also as a matrix of Ln.  

More than that, x⋅In∈Ln, is not the only matrix representation of the integer number x; it can easily 

prove that the sets of matrices: 

H={Al,n(x) | x∈Z}⊂Ml(Z)  and    K={An,r(x) | x∈Z}⊂Mn(Z) 

where, for every x∈Z, Al,n(x)=(aij)∈Mn(Z) is the matrix that has on line l all the elements equal to x and 

in the rest all are equal to 0, that is: 
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aij=






=≠

==

n1,j and li if ,0

n1,j and li if ,x
, 

and An,r(x)=( ija′ )∈Mn(Z) is the matrix that has on the column r all the elements equal to x and in the rest 

all are equal to 0, that is: 

ija′ =






=≠

==

n1,i and rj if ,0

n1,i and rj if ,x
, 

can be equipped with two laws of internal composition, say „•” and „⊥”, respectively „∗” and „Λ” so that 

(H,•,⊥) and (K,∗,Λ) becomes commutative rings isomorphic to the ring (Z,+,⋅). 

Finally, for any a, b∈Z, the functions: 

f1 : Z → Z    and   f2 : Z → Z, 

where, for every x∈Z, 

f1(x)=x+a    and   f2(x)=-x+b, 

are bijective, and: 

f 1
1
−  : Z → Z   and   f 1

2
−  : Z → Z, 

where, for every x∈Z, 

f 1
1
− (x)=x-a   and   f 1

2
− (x)=-x+b. 

According to Vălcan (2017) there are two pairs of laws of internal composition, let's say „♦” and 

„◊”, respectively „♥” and „♠” such that (Z,♦,◊) and (Z,♥,♠) to become two commutative rings 

isomorhpic to the ring (Z,+,⋅). These four laws of internal composition on the set Z are: for every x, y∈Z, 

x♦y=f1(f 1
1
− (x)+f 1

1
− (y))=f1(x+y-2⋅a)=x+y-a, 

x◊y=f1(f 1
1
− (x)⋅f 1

1
− (y))=f1((x-a)⋅(y-a))=(x-a)⋅(y-a)+a=x⋅y-a⋅x-a⋅y+a2+a, 

x♥y=f2(f 1
2
− (x)+f 1

2
− (y))=f2(-x-y+2⋅b)=x+y-b, 

x◊y=f2(f 1
2
− (x)⋅f 1

2
− (y))=f2((-x+b)⋅(-y+b))=-(-x+b)⋅(-y+b)+b=-x⋅y+b⋅x+b⋅y-a2+b. 

In conclusion, the diagram (5.33) can be supplemented with these four commutative rings 

isomorphic to the ring (Z,+,⋅) and with any other ring of this type. 
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