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Abstract 
 

Model evaluation is used to derive model performance index that indicates practical values of prediction 

model. In practice, it occurs in the last step of the statistical modelling pipeline; and various types of model 

evaluation methods or strategies have been proposed in the literature. Iterative resampling strategy is 

believed to be more reliable than sampling approach like Kennard-stone algorithm because it produces 

more than one test set to ensure better representativeness. Most of the iterative resampling methods 

available in commercial statistical software implement random resampling by default. This would produce 

biased estimator if the studied dataset is imbalanced, i.e. unequal group sizes. As a result, stratified 

resampling has been proposed to ensure similar class proportions in both the test and training sets. This 

preliminary work aims to explore empirical differences between stratified and random iterative sampling 

strategies in assessing performances of partial least squares-discriminant analysis (PLS-DA) model using 

imbalanced attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra of blue gel pen 

inks. The dataset consisted of 1361 spectra and 5401 variables; and can be classified into ten different pen 

brands (i.e. groups). The findings demonstrate the merit and pitfalls of the two resampling strategies.   
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1. Introduction 

Model evaluation is an important aspect along the statistical modelling pipeline, especially in the 

context of chemometrics. This is because it enables researchers to gain more insight about the potential of 

the prediction model in real-world settings. In fact, a wealth of model evaluation methods have been 

described in the literature (Colins et al., 2014). Each is characterized by unique merits and pitfalls. Internal 

validation methods including v-fold cross validation and auto-prediction are easy to be conducted and 

economic because require no new samples. However, both approaches are often claimed to be less objective 

than external validation, especially the latter tends to present over-optimistic estimates (Refaeilzadeh, Tang, 

& Liu, 2009; Hawkins, 2004). On the other hand, external testing sample part of the dataset to be test 

samples which are not included in the model training. This ensure less risk of overfitting of the model 

(Consonni, Ballabio, & Todeschini, 2010).  

Recently, Lee, Liong, and Jemain (2018a) demonstrated the limitation of Kennard-stone sampling 

algorithm against the iterative random resampling approaches to derive model performance index via 

external testing method. On the other hand, Molinaro, Simon, and Pfeiffer (2005) reported comparative 

performances between different resampling methods, including v-fold cross validation, leave-one-out cross 

validation (LOOCV), Monte Carlo cross-validation (MCCV) and .632+Bootstrap methods. Both simulated 

and real microarray datasets with a range of sample sizes ( 40,80 and 120)n = were modelled using 

classification methods, i.e. linear discriminant analysis, Classification and Regression Trees and Neural 

Networks. Based on their findings, the resampling strategies show similar performances when the sample 

size is sufficiently big. In order to reduce bias caused by unequal group sizes, Molinaro et al. (2005) have 

used stratified resampling approaches in all the model validation methods.  

   

2. Problem Statement 

In practice, resampling strategies can be implemented randomly or systematically. The former 

allows the same sample to be resampled without restriction. It allows more possible number of 

combinations than the latter because systematic resampling ensures each sample only assigned as test set 

once. Random resampling is easy to run but could produce biased estimate if the dataset is imbalanced, i.e. 

varying group sizes. As a result, stratified resampling which samples test set by group was proposed. 

Stratified random resampling performs random resampling only on samples from the predefined group 

rather than on the whole samples. As such, stratified random resampling preserves similar class proportions 

in the training and corresponding test sets (Molinaro et al., 2005). Kohavi (1995) has discussed the 

advantages of stratified resampling over random resampling in classification modelling by using cross-

validation method.  

   

3. Research Questions 

This work aims to find answer for two different but related research questions: 

3.1. What is the difference between stratified random iterative sampling (RIS) and stratified iterative 

sampling (SIS) in external testing method? 
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3.2. Does the relative difference between stratified and random resampling strategies affected by 

the number of iterations and PLS components? 

 

4. Purpose of the Study 

The purpose of this work is to examine merits and pitfalls of stratified (SIS) and random (RIS) 

resampling in external testing method. The PLS-DA technique and ATR-FTIR spectrum were used to 

construct the prediction models.  

  

5. Research Methods 

All statistical analysis was performed using the R environment for statistical computing and 

graphics, version 3.5.0 (R Core Team 2018). PLS-DA was performed with ‘caret’ package (Kuhn, 2019) 

and AsLS via ‘baseline’ package (Liland & Mevik, 2015). 

 

5.1. ATR-FTIR Spectral Dataset 

The primary spectral dataset consisting of 1361 samples and 5401 variables has been studied and 

reported elsewhere (Lee, Liong, & Jemain, 2018b, 2018c, 2019a, 2019b). The practical purpose of 

classification model is to predict brand of unknown pen inks using based on ATR-FTIR spectrum of the 

ink entry. Table 01 shows the number of spectrum according to ten different pen brands. More details about 

the spectra collection procedures can be referred to Lee, Liong, and Jemain (2018b). The dataset was first 

truncated and included only region between 2000-1600 cm-1; and then preprocessed using Asymmetric 

Least Squares (AsLS) algorithm (Eilers & Boelens, 2005). The pretreatment procedures are in accordance 

with the previous works conducted using the same spectral dataset (Lee, Liong, & Jemain, 2018c).  

 

Table 01.  ATR-FTIR spectra of blue gel pen inks 

Pen Brand Number of spectrum 

Bic 120 

Faber Castell 110 

Faster 83 

G-Soft 65 

LINC 115 

M&G 398 

PaperMate 150 

Pilot 100 

Unicorn 70 

U&Me 150 

Sum 1361 

 

5.2. Partial Least Squares-Discriminant Analysis (PLS-DA) Method 

The dataset was split into 7:3 training and test sets using stratified (SIS) and random (RIS) iterative 

sampling strategies. Both strategies were repeated for 1, 2,...,1000r =  times to draw a total of 408 test 

samples from the primary spectral dataset. Figure 01 illustrates the technical differences between the two 
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resampling strategies in sampling 408 spectra for external testing purpose.  External prediction accuracy 

(Acc) was computed using the test sets as follows: 

 

'

tst

tst

Acc
n

n
=  

where 
tst

n   and 
'

tst
n  respectively denote total number of test set and correctly predicted test samples, 

'

tst tst
n n .  

 

5.3. Model Validation 

The dataset was split into 7:3 training and test sets using stratified (SIS) and random (RIS) iterative 

sampling strategies. Both strategies were repeated for 1, 2,...,1000r =  times to draw a total of 408 test 

samples from the primary spectral dataset. Figure 01 illustrates the technical differences between the two 

resampling strategies in sampling 408 spectra for external testing purpose.  External prediction accuracy 

(Acc) was computed using the test sets as follows: 

 

'

tst

tst

Acc
n

n
=  

where 
tst

n   and 
'

tst
n  respectively denote total number of test set and correctly predicted test samples, 

'

tst tst
n n .  

 

Figure 01.  General procedures used in simple random and stratified random sampling. The 

procedures are repeated for r times. 
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5.4. Comparison Analysis 

The two resampling strategies were compared using descriptive and inferential statistics as well as 

exploratory tool, i.e. principal component analysis (PCA). The list of accuracy rates were used to compute 

mean ( )x , standard deviations (SD) and coefficient of variation (CV) as shown below: 

 

1
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where x denotes accuracy rates and rn  refers to the number of iterations. Two-tailed hypothesis tests, i.e. 

paired t-test and Wilcoxon signed rank test, were also employed to asses if the difference observed in terms 

of model accuracy is significant at 5% level of significance. Last but not least, PCA was conducted to 

illustrate spatial distribution of the two resampling strategies in different perspectives (Bro & Smilde, 

2014). Scores plot of the first two principal components shows the relative distances between RIR and SIR.  

   

6. Findings 

The performances of RIS and SIS were compared sequentially via descriptive and inferential 

statistics. In order to gain more comprehensive insights, the difference has been assessed by considering 

the impacts of number of PLS components and iterations. Table 02 shows the mean and CV values of RIS 

and SIS by number of PLS components and iterations. It clearly shows that RIS and SIS exhibit similar 

performances when involves more number of PLS components or number of iterations increases. Model 

series that constructed using the first 10 PLS components tend to present pessimistic accuracy rates with 

RIS approach. However, both RIS and SIS produced similar accuracy rates as the number of iterations 

increased or after includes more number of PLS components. This is supported by the p-values estimating 

via paired t-test or Wilcoxon rank-signed test as summarized in Table 02.  

In addition, the respective CV values reduce as the model includes more number of PLS 

components. It can be clearly seen from Table 02, degree of changes of CV values along different number 

of iterations highly depends on the number of PLS components. As more number of PLS components have 

been included in the model, number of iterations causes insignificant changes in the CV values. Contrarily, 

changes of CV values can be drastic in models including only the first 10 PLS components. Results deriving 

from the descriptive statistics are confirmed by the respective inferential statistics. This is because none of 

p-values presented in Table 03 is less than 0.05. 
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Figure 02 shows the relative distances between RIS and SIS using scores plot of PCA. It is clearly 

demonstrated that both RIS and SIS become similar to each other when more number of PLS components 

were included in the model. In addition, it is important to note that the trend of relationship between the 

two strategies is unlikely being affected by the number of iterations. The overall patterns projected by the 

two resampling strategies over the four different number of PLS components are preserved regardless of 

the number of iterations being considered.  

In other words, this indicates both RIS and SIS are quite similar in performances. This provides 

evidence to state that stratification is not necessary in validating a colossal, multi-class and imbalanced 

spectral dataset. However, this is not in line with previous work stated stratified sampling shall be preferred 

in imbalanced dataset (Kohavi, 1995). Such discrepancy can be partly explained by the fact that the studied 

dataset is of colossal size; and each group has been represented by rather large sample size. As a result, the 

relative class proportions show less deviations between the different drawn even simple random techniques 

has been adopted. 

 

Table 02.  Descriptive statistics: Mean (coefficient of variations) presented by number of PLS components 

and iterations as computed via random iterative sampling (RIS) and stratified iterative sampling 

(SIS) strategies 

#PLS 10 15 20 25 

#iterations RIS SIS RIS SIS RIS SIS RIS SIS 

5 
0.900 

(0.037) 

0.896 

(0.014) 

0.964 

(0.012) 

0.964 

(0.013) 

0.989 

(0.008) 

0.983 

(0.006) 

0.998 

(0.004) 

0.994 

(0.004) 

10 
0.895 

(0.032) 

0.889 

(0.018) 

0.964 

(0.010) 

0.967 

(0.010) 

0.988 

(0.006) 

0.987 

(0.006) 

0.997 

(0.003) 

0.994 

(0.003) 

20 
0.887 

(0.029) 

0.885 

(0.019) 

0.965 

(0.010) 

0.967 

(0.008) 

0.987 

(0.007) 

0.989 

(0.006) 

0.994 

(0.005) 

0.995 

(0.003) 

40 
0.884 

(0.029) 

0.887 

(0.021) 

0.965 

(0.010) 

0.967 

(0.010) 

0.987 

(0.007) 

0.989 

(0.007) 

0.994 

(0.005) 

0.995 

(0.003) 

50 
0.883 

(0.028) 

0.887  

(0.020) 

0.966 

(0.010) 

0.967 

(0.009) 

0.987 

(0.007) 

0.989 

(0.007) 

0.994 

(0.005) 

0.995 

(0.004) 

100 
0.881 

(0.028) 

0.887 

(0.019) 

0.966 

(0.011) 

0.967 

(0.010) 

0.987 

(0.008) 

0.989 

(0.006) 

0.994 

(0.005) 

0.995 

(0.004) 

200 
0.882 

(0.027) 

0.884 

(0.019) 

0.966 

(0.011) 

0.966 

(0.010) 

0.987 

(0.008) 

0.988 

(0.006) 

0.994 

(0.004) 

0.995 

(0.004) 

500 
0.884 

(0.028) 

0.885 

(0.019) 

0.965 

(0.011) 

0.965 

(0.009) 

0.987 

(0.008) 

0.987 

(0.006) 

0.995 

(0.004) 

0.995 

(0.004) 

1000 
0.885 

(0.028) 

0.884 

(0.020) 

0.964 

(0.011) 

0.965 

(0.009) 

0.987 

(0.008) 

0.987 

(0.006) 

0.994  

(0.004) 

0.995 

(0.004) 
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Table 03.  Inferential statistics: Statistics (p-values) presented by number of PLS components and 

iterations as computed via random iterative sampling (RIS) and stratified iterative sampling 

(SIS) strategies 

#PLS 10 15 20 25 

#iterations t W t W t W t W 

5 
0.223 

(0.834) 

10 

(0.625) 

0.00 

(1.000) 

6  

(0.855) 

1.044 

(0.355) 

11 

(0.438) 

1.360 

(0.245) 

12 

(0.313) 

10 
0.502 

(0.628) 

35 

(0.492) 

-0.683  

(0.525) 

14 

(0.624) 

0.662  

(0.525) 

28 

(0.514) 

1.941 

(0.084) 

24.5 

(0.090) 

20 
0.317 

(0.754) 

108 

(0.615) 

-0.628 

(0.537) 

72 

(0.850) 

-0.965 

(0.346) 

56 

(0.343) 

-0.247 

(0.808) 

67  

(0.979) 

40 
-0.630 

(0.533) 

324.5 

(0.689) 

-0.727 

(0.472) 

268.5 

(0.626) 

-0.801 

(0.428) 

272 

(0.486) 

-0.615 

(0.542) 

288.5 

(0.884) 

50 
-1.024 

(0.311) 

486 

(0.412) 

-0.606 

(0.548) 

437 

(0.668) 

-0.887 

(0.380) 

424.5 

(0.414) 

-0.651 

(0.518) 

419.5 

(0.693) 

100 
-1.798 

(0.075) 

1847.5 

(0.109) 

-0.750 

(0.455) 

1888 

(0.522) 

-1.751 

(0.083) 

1568 

(0.105) 

-1.339 

(0.184) 

1610.5 

(0.262) 

200 
-1.043 

(0.298) 

8709 

(0.339) 

-0.277 

(0.782) 

8247 

(0.912) 

-1.677 

(0.095) 

7125 

(0.180) 

-1.037 

(0.301) 

6157 

(0.383) 

500 
-0.320 

(0.749) 

59010.5 

(0.959) 

-0.838 

(0.402) 

52503 

(0.513) 

-0.995 

(0.320) 

48813.5 

(0.647) 

-0.474 

(0.636) 

39742 

(0.877) 

1000 
0.365 

(0.715) 

243175.5 

(0.512) 

-1.759 

(0.079) 

200980.5 

(0.161) 

-0.917 

(0.360) 

194848 

(0.743) 

-0.712 

(0.476) 

167394 

(0.941) 
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Figure 02.  Scores plots show distribution among the two resampling strategies across different 

number of PLS components by considering different number of iterations 

 

7. Conclusion 

This work has compared empirical performances between random (RIS) and stratified (SIS) iterative 

sampling methods in PLS-DA model. It is concluded that simple random resampling can be as reliable as 

stratified resampling in deriving model performance using imbalanced dataset if the dataset is of colossal 

size.  
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