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Abstract 

Data arising in Human Resource Management research usually comes from variables measured at 
different levels of analysis. These data presents an inherent multilevel structure. Single level models, such 
as simple or multiple regression, are not suitable for efficient modeling. Hierarchical Linear Models are 
more appropriate tools, especially if estimated with a Bayesian statistical approach. Three different 
models have been fitted to a typical multilevel HR data set and compared in a Bayesian setting: a single-
level linear model, a two-levels linear model with random intercept and slope, and a cross-level 
interaction model. The three models have been compared on the basis of the difference in expected log 
predictive density. The cross-level interaction model was the best one. Reasons for considering the 
Bayesian framework as the most natural environment for analyzing multilevel data generated in HRM 
research are outlined. Some advantages, peculiarities, and capabilities of modern software packages 
designed for Bayesian statistical analysis are also outlined. 
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1. Introduction  

Sources of data in Human Resource Management (HRM) are usually placed at several different 

levels: firm, organization, unit, team, and individual. Employee’s behaviour may be affected by both 

personal attitudes and organization variables. This is why research in this area asks for parametric models 

with more than one level (Ostroff & Bowen, 2000; Shen, Messersmith, & Jiang, 2018). Due to the 

multilevel nature of data structure, single level linear modelling (simple or multiple classical regression) 

is not suited for exploration, modelling, and prediction of data arising in HRM (Aguinis, Gottfredson, & 

Culpepper, 2013; Shen et al., 2018; Shen, 2016). When conducting research that includes variables 

measured at different levels of analysis, researchers explicitly recognize that lower-level entities, such as 

individuals, are nested within higher-level collectives such as teams (Aguinis et al., 2013). The multilevel 

nature of data requires dependence among observations to be considered both conceptually and 

analytically (Snijders & Bosker, 2012). A higher-level variable may covary with relevant lower-level 

outcomes variables, and entities within collectives may be more similar regarding certain variables 

compared to entities across collectives (Bliese & Hanges, 2004). It may also happen that the nature of the 

relationship between lower-level variables depends on higher-level ones, the so-called cross-level 

interaction effect (Aguinis et al., 2013).  A Hierarchical Linear Model (HLM) also called Multilevel 

Model or Mixed Model, explains variance among variables at more than one level and is usually better 

fitted to data arising in HRM. HLM allows researchers to understand whether relationships between 

lower-level variables, such as individual job satisfaction and performance, firm capabilities and 

performance, change as a function of higher-order moderator variables, such as leadership climate or 

marked-based conditions (Aguinis et al., 2013; Shen et al., 2018).  

HLM in social and behavioural sciences, as well as in HRM, are more often estimated in the 

frequentist statistical framework (Aguinis et al., 2013; Cohen, Cohen, West, & Aiken, 2003; Muth, Oravecz, 

& Gabry, 2018). However a Bayesian statistical approach to HLM fitting, besides being the most natural, 

offers several advantages, in terms of interpretability of estimates and flexibility to increasingly complex 

models (Muth et al., 2018; Korner-Nievergelt et al., 2015; McElreath, 2016). Until fairly recently, due to 

computational limitations, practical Bayesian statistical analysis was limited to few applications. Markov-

Chain Monte Carlo (MCMC) methods, a suite of random-sampling simulation methods originally 

formulated in the 1950s in statistical physics, has greatly expanded the application of Bayesian methods 

to applied data analysis (Fox & Weisberg, 2019; Gelman et al., 2013; Kruschke, 2015). Bayesian 

modelling has become increasingly accessible and efficient thanks to advances in statistical software and 

generic estimation engines such as Stan (Stan Development Team, 2017; Carpenter et al., 2017; 

Kruschke, 2015).  Stan implements a species of MCMC methods, called Hamiltonian Monte Carlo, which 

provides advantages of robustness and efficiency relative to older MCMC methods such as the 

Metropolis-Hastings algorithm and the Gibbs sampler (Fox & Weisberg, 2019). Several modern Stan-

based R packages make some Stan’s functionality available using programming techniques familiar to R 

users. In this paper we have taken advantage of using the rstanarm R package (Stan Development Team, 

2017; Carpenter et al., 2017) that make Bayesian model specification more easy and succinct by miming 

the syntax of several R’s functions very popular in the frequentist statistical community. 



https://doi.org/10.15405/epsbs.2019.10.02.19 
Corresponding Author: Marcello De Giosa  
Selection and peer-review under responsibility of the Organizing Committee of the conference 
eISSN: 2357-1330 
 

 210 

It is well known that, among operative functions of modern HRM, improvement of employees’ 

relations, team building and leadership management, play a crucial role. As a result of the widespread 

move to team-based organizations in industry, managers are often asked to lead and motivate both 

individuals and teams as a whole. When building and fitting statistical models, researchers in this field 

should consider the dynamic interplay between the individuals within a team and the team as a whole 

(Chen, Kirkman, Kanfer, Allen, & Rosen, 2007). 

 In this paper we have considered a typical HR data set concerning individuals grouped in several 

teams. The data set presents a natural nested (hierarchical) structure and was originated and analyzed in 

Aguinis et al. (2013). The data set considered in that paper, was patterned after Chen et al. (2007). Among 

other concepts, several multilevel models were fitted to the data and compared, but in a frequentist 

statistical setting. However multilevel models naturally fit into the Bayesian paradigm (Kruschke, 2015; 

Shen et al., 2018; Gelman et al., 2013). This is the reason, in addition to various advantages, for which we 

have analysed the same data in a Bayesian statistical framework. One single-level linear model, one two-

level hierarchical linear model and one cross-interaction two-level linear model have been fitted and 

compared. General advantages of a modern Bayesian statistical approach, in terms of interpretability of 

the results, and of modern analytical and graphical tools have been outlined. For the computational aspect 

of this paper we have taken advantage of the Stan software (Stan Development Team, 2017) and of the R 

statistical software and some of its packages (R Core Team, 2018).  

 

2. Literature Review and Theoretical Framework  

In this section we presents a review of literature on multilevel modelling in HRM research, on 

modern Bayesian statistical analysis, and on software availability. 

 

2.1. Literature review 

For a state of art, wide and exhaustive introduction to multilevel thinking and modelling in HRM 

research, we refer to Bliese (2002), Renkema, Meijerink and Bondarouk (2017), Shen et al. (2018), Shen 

(2016), Aguinis et al. (2013), and the references therein. Gelman and Hill (2007) is a good, perhaps dated 

from a computational point of view, introduction to general Bayesian statistical methods. Gelman et al. 

(2013) is a quite complete, but mathematically and technically demanding, presentation of modern 

Bayesian methods with an appendix on using Stan and R. McElreath (2016) is a gentle introduction to 

Bayesian methods, including multilevel linear models, with R and Stan. Fox and Weisberg (2019) is a 

good reference for applied regression with R, including multilevel (mixed) models, with a freely available 

web appendix on Bayesian estimation with Stan.  For the Stan program, the state of art in Bayesian 

statistical software, we manly refer to Carpenter et al. (2017). Gabry and Goodrich (2018) present the 

rstanarm package, a Stan based R package.  Gabry, Mahr, Bürkner, Modrák, and Barret (2018) is the 

reference for the bayesplot package for plotting Bayesian models. Muth et al. (2018) is an excellent 

introduction to Bayesian hierarchical linear models fitting with rstanarm package and the user-friendly 

exploration of results with the shinystan package. References therein can guide the interested readers 

towards a deeper knowledge of the subject. 
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2.2. The Bayesian approach to model fitting with Stan and rstanarm. 

The statistical models presented later in this paper can all be estimated and fitted to data with a 

frequentist approach. However when data presenting a multilevel structure asks for hierarchical 

modelling, the Bayesian statistical approach is the most suitable one. The starting point of Bayesian 

statistics is Bayes’ theorem. In a regression model setting its general form states that the posterior 

probability distribution 𝑝𝑝(𝜃𝜃|𝑦𝑦, 𝑥𝑥) of parameters 𝜃𝜃 given data 𝑦𝑦 and 𝑥𝑥 is proportional to the product of the 

likelihood function, 𝑝𝑝(𝑦𝑦|𝜃𝜃, 𝑥𝑥), of the observed response data 𝑦𝑦 given the parameters 𝜃𝜃 and the regressor 

data 𝑥𝑥, and the prior distribution 𝑝𝑝(𝜃𝜃) of the parameters: 

𝑝𝑝(𝜃𝜃|𝑦𝑦, 𝑥𝑥) ∝ 𝑝𝑝(𝑦𝑦|𝜃𝜃, 𝑥𝑥)𝑝𝑝(𝜃𝜃). 

Here we have assumed that, as it is the case in standard regression setting, 𝑥𝑥 and 𝜃𝜃 are 

independent, so that the prior 𝑝𝑝(𝜃𝜃) doesn’t depend on the regressor 𝑥𝑥.  

The most compelling applications of Bayesian methods typically aren't to standard regression 

models, such as the normal linear model or generalized linear models, but to problem where we want to 

specify a customized probability model for the data such as a Hierarchical Linear Model, in short HLM 

(Fox & Weisberg, 2019; Muth et al., 2018). HLM is an extension of the classical linear model that is well 

suited for data like ours that present a nested structure where individuals are grouped in teams. 

Relationships are expected to be similar in the same group and groups are not generally exchangeable 

(Gelman & Hill, 2007; Hox, Moerbeek, & van de Schoot, 2018). Modeling in the Bayesian statistical 

framework is mainly composed of four key steps (Muth et al., 2018): data model and prior specification, 

parameters estimation, sampling quality and model fit checking, results summarization and interpretation. 

Here, because of space limitations, we will not deeply explore all the four steps. The Stan estimation 

engine has been used to fit the statistical models described in the next sections via the rstanarm package. 

We used the default weakly informative priors of rstanarm. The rstanarm package allows the user to 

easily specify the models considered (Carpenter et al., 2017). Several fundamental tools for MCMC 

diagnostic are also implemented in the package as well as useful numerical device for results 

summarization. Graphical representation tools used in this paper are provided by the bayesplot package 

(Gabry et al., 2018).  

We encourage the reader to further explore the literature on Bayesian methods, for example via 

Gelman and Hill (2007), Gelman et al. (2013), Kruschke (2015), McElreath (2016). 

 

3. Research Method  
In this section we present the data and the statistical models to be fitted to them. 

 

3.1. The data 

Our data set is part of a publicly available larger data set originated by Aguinis et al., (2013) and 

patterned after a study by Chen et al. (2007), composed of individual observations of several variables on 

630 employee. We have selected 4 columns from the original data set, named as: quality of leader-

member exchange (LMX), individual empowerment (IE), leadership climate (LC), and Team. So our data 

set is composed of 630 rows (observations) and 4 columns (variables). The 630 employees are nested in 
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105 teams, identified by the Team variable, each composed of 6 individuals. The leadership climate is a 

Team dependent variable. The goals of the previously cited studies were to investigate whether the quality 

of leader-member exchange (LMX) predicts individual empowerment (IE) and the role of the team 

dependent leadership climate (LC). Chen et al.’s model predicted that individuals who report a better 

relationship with their leader (i.e., a higher LMX value) has the autonomy and capability to perform 

meaningful works that positively affect their organization (i.e., they feel more empowered). The model 

assumed also that the team-level variable LC would affect the individual-level empowerment IE 

positively. It was also supposed that the relationship between LMX and IE would be stronger for teams 

with higher LC. See Aguinis et al. (2013) for more information on the data. 

 

3.2. The statistical models 

The first model considered in this paper is a simple linear model explaining the relationship 

between the level-1 variables individual empowerment (IE) and leader-member exchange (𝐿𝐿𝐿𝐿𝐿𝐿): 

𝐼𝐼𝐼𝐼𝑖𝑖 = b0 + b1 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 + 𝜀𝜀𝑖𝑖 , 𝜀𝜀𝑖𝑖 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 𝑠𝑠2) . 

We will refer to this model as model1. This model could be considered a conceptually wrong one, 

because it ignores the nested  (hierarchical) structure of our data. However we will fit it to data to derive 

an overall relationship between IE and LMX. We will later compare model1 to each team-specific fitted 

regression line considered in model2 (see Figure 01), as defined below.  

The second considered model, referred as model2, is a hierarchical two-levels model, with random 

intercept and random slope: 

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 = b0 + b0j + (b1 + b1j) 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 , 

�b0j
b1j�  ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ��0

0� , � s02 𝑁𝑁 s0 s1
𝑁𝑁 s0 s1 s12

��  , 𝜀𝜀𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 𝑠𝑠2) . 

This model improves model1 by taking into account the nested structure of the data: employees are 

grouped in teams. It is expected that people in the same team share similar IE-LMX relationship. The 

strength of this relationship is supposed to vary among teams. In model2, parameters b0 and b1 are the 

overall intercept and slope parameters, while b0 + b0j and 𝑏𝑏1 + 𝑏𝑏1𝑗𝑗 are the intercept and slope 

parameters for the 𝑗𝑗th team. The error 𝜀𝜀𝑖𝑖𝑖𝑖 reflect individual-level variation within each team, and its 

variance 𝑠𝑠2 quantifies the within-team variation. The variance of b0j, denoted by s02, quantifies the 

degree of heterogeneity in intercept across teams. The variance of b1j, denoted by s12, quantifies the 

degree of heterogeneity in slope across teams. The parameter 𝑁𝑁 represents the correlation between 

intercepts and slopes and it should be interpreted in the following way: a positive value for 𝑁𝑁 means that 

teams with stronger IE-LMX relationship tend to have higher IE level (Aguinis et al., 2013). 

The third model, model3, is a cross-level interaction hierarchical model, with random intercept 

and random slope: 

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 = b0 + b0j + (b1 + b1j) 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + b2 𝐿𝐿𝐿𝐿𝑖𝑖 + b3 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 × 𝐿𝐿𝐿𝐿𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 , 

�b0j
b1j�  ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ��0

0� , � s02 𝑁𝑁 s0 s1
𝑁𝑁 s0 s1 s12

��  , 𝜀𝜀𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎2) . 
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This is the model considered in Step 4 of Aguinis et al., 2013. Note that model3 presents the same 

hierarchical structure of model2, but it is also hypothesized, as in Chen et al. (2007), that the team-level 

variable LC would affect individual-level IE and the relationship between IE and LMX.  

For more information about models as model2 and model3, readers may refer to Aguinis et al. 

(2013), Hox et al., (2018), Snijders & Bosker (2012). 

 

3.3. The software 

We have intensively used the Stan program (Carpenter et al., 2017) via the rstanarm package 

(Gabry & Goodrich, 2018), which provides an R software interface to Stan programming. The bayesplot 

R package (Gabry et al., 2018) has complemented the rstanarm tools providing an extensive library of 

function for plotting posterior draws, visual MCMC diagnostic, as well as graphical posterior predictive 

checking. 

 

4. Findings 

In this section we present part of the outputs of the Bayesian analysis aimed to fit models to data. 

Results for different models are in different subsections.  

 

4.1. Results for model1 fitting. 

The estimated posterior mean, standard deviation and 95% Credible Intervals (CI’s) for the 

intercept b0, the slope b1 and the residual standard error s for model1 are reported on Table 01. 

 

Table 01. Posterior mean, standard deviation (st.dev.), and 95% CI’s (2.5%, 97.5%) for parameters of 
model1 

 mean st.dev. 2.5% 97% 

b0 5.720 0.0332 5.654 5.784 

b1 0.279 0.0258 0.227 0.328 

𝑠𝑠 0.828 0.0234 0.785 0.875 

 
 

Table 02. Posterior mean, standard deviation (st.dev.), and 95% CI’s (2.5%, 97.5%) for relevant 
parameters of model2 

 mean st.dev. 2.5% 97.5% 

b0 5.7193 0.0443 5.63184 5.8072 

b1 0.2708 0.0282 0.21462 0.3245 

𝑠𝑠 0.7231 0.0243 0.67761 0.7735 

𝑠𝑠0 0.1264 0.0300 0.07593 0.1922 

𝑁𝑁 0.0144 0.0128 -0.01009 0.0401 

𝑠𝑠1 0.0265 0.0122 0.00656 0.0533 
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4.2. Results for model2 fitting. 

Results for model2 has 213 more estimated parameters than results for model1. This is because 

model2 estimates intercept and slope for each of the 105 teams, and it estimates also the level-2 spread in 

terms of st. dev.s s0, s1, and correlation r. In Table 02 are reported the estimated mean, standard deviation 

and 95% C.I. for the overall population intercept b0, the overall population slope b1, the level-1 residual 

standard error s, the between-team intercept standard deviation s0, the between-team slope standard 

deviation s1, the between-team intercept-slope correlation r. For space saving, Table 02 is truncated to 

exclude the 210 estimated intercept and slope increments for all teams. One of the best features of 

Bayesian estimation is that it returns (posterior) samples for estimated parameters, from which we can 

derive estimated probability density functions.  

In Figure 01, such estimated density are represented for relevant parameters of model2, with 80% 

CI’s. Note that all CI’s don’t contain 0. This can be interpreted in a Bayesian framework as evidence that 

all parameters should be considered significantly different from 0. 

In Figure 02 a graphical comparison of model1 and model2 is represented for the first 4 teams. 

Dots are the observed data. The dashed line is the estimated posterior regression line from model1. The 

dark lines are the estimated posterior regression lines from model2. The light lines represent uncertainty 

in posterior intercept and slope parameters for each team. 

 

Table 03. Posterior mean, standard deviation (st.dev.), and 95% CI’s (2.5%, 97.5%) for relevant 
parameters of model2 

 mean st.dev. 2.5% 97.5% 

b0 5.7193 0.0443 5.63184 5.8072 

b1 0.2708 0.0282 0.21462 0.3245 

𝑠𝑠 0.7231 0.0243 0.67761 0.7735 

𝑠𝑠0 0.1264 0.0300 0.07593 0.1922 

𝑁𝑁 0.0144 0.0128 -0.01009 0.0401 

𝑠𝑠1 0.0265 0.0122 0.00656 0.0533 

  

 

 
Figure 01. model2: Posterior medians with 80% and 90% credible intervals for relevant parameters 
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4.3. Results for model3 fitting. 

Results for model3 comprise 2 more estimated parameters than results for model2. This is because 

model3 estimates also coefficients for leadership climate and for leader-member exchange:leadership 

climate interaction. The estimated mean, standard deviation and 95% C.I. for the relevant parameters of 

model3 are reported in Table 03. For space saving, Table 03 is truncated to exclude the 210 estimated 

intercepts and slopes for all teams. In Figure 03 are represented the posterior medians and 80% and 90% 

credible intervals for coefficients of LMX, LC, and LMX:LC interaction. All intervals don’t contain 0. 

This means that model3 should be considered a better model than model2.  

Results of a more analytic model comparison are presented in the next subsection. 

 

 
Figure 02. Graphical comparison of model1 and model2 for the first 4 teams. Observed data (dots); 

model1 posterior mean regression line (dashed line); model2 posterior mean regression lines 
(dark lines), and uncertainty (light lines) 

 

Table 04. Posterior mean, standard deviation (st.dev.), and 95% CI’s (2.5%, 97.5%) for relevant 
parameters of model3 

 Mean st.dev. 2.5% 97.5% 
b0 5.72004 0.0379 5.64564 5.7931 
b1 0.26970 0.0272 0.21516 0.3224 
b2 0.35052 0.0542 0.24199 0.4572 
b3 0.10507 0.0374 0.03101 0.1788 
𝑠𝑠 0.72720 0.0262 0.67819 0.7797 
𝑠𝑠0 0.06366 0.0233 0.02046 0.1131 
𝑁𝑁 -0.00336 0.0100 -0.02392 0.0152 
𝑠𝑠1 0.01934 0.0112 0.00195 0.0452 
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4.4. Model comparison. 

We have evaluated our models with the leave-one-out (loo) cross-validation and compared them 

on the basis of the difference in expected log predictive density (elpd-diff). When comparing model1 and 

model2, we have found elpd-diff=35.2 with an estimated standard error st.err.=7.3. The positive 

difference in elpd (more than twice the estimated standard error) indicates that model2 is expected to have 

a better predictive performance than model1. When comparing model2 and model3, we have found elpd-

diff=9.4 with an estimated standard error st.err.=5.0. It follows that model3 should be preferred to model2 

for the predictive performance. For computation we have used the loo R package. For more information 

on the loo package and leave-one-out cross-validation and model comparison please refer to Vehtari, 

Gelman and Gabry (2017). 

 

 

 
Figure 03. Estimated posterior medians with 80% and 90% credible intervals for relevant parameters of 

model3 
 

5. Conclusion and Discussions 

Research in HRM is inherently a multilevel field of study as data originated in this field usually 

has an intrinsic hierarchical structure. Although until a few years ago HRM research has been conducted 

only at the single level of analysis, single level statistical tools, such as linear model, are not ideal. 

Multilevel modelling was first used in education and marketing research (Shen et al., 2018). Very recent 

trends have witnessed a growing use of hierarchical linear model (HLM) in HR literature, but estimation 

efforts of these models are more often faced with a frequentist statistical approach. The Bayesian 

statistical approach is actually ideally suited for constructing hierarchical models, and it is therefore very 

useful for analysing data structures with multiple levels, such as data from individuals who are members 

of groups which in turn are in higher-level organizations (Kruschke, 2015; Kruschke & Vanpaemel, 2015; 

Gelman et al., 2013).  

In this study we have fitted in a Bayesian statistical framework three different models to a data set 

originated and analyzed in Aguinis et al. (2013) with a frequentist approach. The goal of that paper was to 

investigate whether the quality of leader-member exchange (LMX) predicts individual empowerment (IE) 

and the role of the team dependent leadership climate (LC). In this paper we have considered similar 

multilevel models, but our goal was to show the advantage of a Bayesian estimation approach. The first 

model considered here, model1, is a single level simple linear model to simply predict IE from LMX. We 
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have then casted the problem in a hierarchical, or two-levels, modeling framework. The second model, 

model2, include random intercept and slope by nesting IE and LMX data in the 105 teams into which the 

employees were grouped. Simultaneously measuring team-level and population-level trends, model2 

improved estimation accuracy. The last considered model, model3, was a cross-level interaction 

hierarchical model, with random intercept and random slope. It was proved that the team-level variable 

LC affect the individual-level empowerment IE positively, and that the relationship between LMX and IE 

is stronger for teams with higher LC. Some of the results were already obtained in Aguinis et al. (2013) in 

a frequentist paradigm, but we have shown the richness of the Bayesian statistical analysis outputs and 

some graphical capabilities of modern paraphernalia available to Bayesian analysts via several R 

packages.  

Although the majority of HRM research has historically been conducted at the single level of 

analysis (Shen, 2016), today it is well known that multilevel modelling significantly advances HRM 

research by more accurately predicting HRM effects and estimating complex HRM models (Shen et al., 

2018). In this paper we have shown, with a concrete example, how modern computational, diagnostic and 

representation tools have made the Bayesian statistical approach the most convenient as well as the most 

natural paradigm for analysis and modelling of multilevel data arising in HRM research.  
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