
The European Proceedings of
Social & Behavioural Sciences

EpSBS

Future Academy ISSN: 2357-1330

https://dx.doi.org/10.15405/epsbs.2019.01.30

9th ICEEPSY 2018
International Conference on Education and Educational

Psychology

COMPUTER GAMES AS A TOOL FOR THE DEVELOPMENT OF
ALGORITHMIC THINKING

Veronika Stoffová (a)*
*Corresponding author

(a) Palacký University Olomouc, Faculty of Education, Department of Technical Education and Information
Technology, Žižkovo nám. č. 5, Olomouc 771 40, Czech Republic, veronika.stoffova@upol.cz

Abstract

The purpose of the study is to identify whether a playing computer games that have their own rules and
winning strategy develop algorithmic thinking of players. Several questions pertaining to whether a
computer game user can express game rules as an algorithm, whether playing didactic computer games can
develop the algorithmic thinking of a player, or whether computer games and their playing is motivational
enough for students to learn programming so they could create their own computer games were considered
for investigation. There was also interest in whether students can use their knowledge from playing
computer games to creating their own. This included the concern about their implementation of increasing
difficulty, evaluating player’s performance or archiving results. Another point of interest was how students
dealt with possibility to pause the game, resuming its state and continuing playing the game, option to
change the number of players or whether the application contains playing or even winning strategy etc. An
experiment was carried out among students of selected teacher training faculties in Slovakia to examine
whether students solved game situations using algorithms to developing a winning strategy. Based on
results of the study project-based and problem-based education were implemented into programming
classes for future teachers of computer science with goal set to gamification of education, so teaching
programming would be fun and learning could become a game.

© 2019 Published by Future Academy www.FutureAcademy.org.UK

Keywords: Computer games, algorithmical thinking, teacher training.

The Author(s) 2019. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 321

1. Introduction

Use of computers and digital devices is a daily necessity in the lives of pupils and students. They

use mobile devices not only for communication, acquiring information, learning, using different services,

but also for relaxation and playing. Studies has shown that children, youngsters and students spend a

significant amount of time playing computer games while working with a computer. Computer games aren’t

despised even by adults and seniors, where in case of their favorite relaxation activities like desk games:

checkers, chess, mill etc., card games: patience, solitare and other games that are implemented on a

computer an opponent, partner or a companion is played by a computer (Chráska, 2016c; Chráska & Basler,

2016). A computerised version of a game usually contains not only monitoring whether game is played by

the rules but also certain player’s strategy which can lead to winning or a good performance of a computer

in a role of an opponent. That is why didactic computer games were implemented in programming classes

where logical and programming thinking is essential. This implementation of chosen didactic games

(Stoffová, 2016a; Dostál, 2009) can be considered a good topic to check whether a student has mastered

basics of algorithmizing and programming and whether he is able to create software individually or in a

team (Kožlej, 2018; Végh, 2017)

Every informatics (computer science) teacher educational program contains several classes oriented

on algorithms and programming. Absolvent profile shows that every teacher of informatics should master

all informatics subjects which are being taught in elementary schools and high schools. He has to constantly

update content of these subjects, innovate them and use adequate modern and effective methods and

technologies in teaching. He/she should therefore be not only a good specialist, but also a good teacher who

motivates, encourages, makes students more active, knows how to raise interest in the subject he teaches

but also knows how to maintain and increase curiosity and interest in acquiring knowledge and skills needed

in a given subject. Programming dominates among fundamental informatics subjects.

1.1. Programming in educational process of IT teachers

Programming has a specific place among informatics subjects for many reasons. In this subject,

students most significantly develop their logical, algorithmic, programming and informatics thinking and

also their ability to algorithmically, clearly and exactly express process of solving not only technical, but

also everyday problems (Czakóová, 2016a, 2016b). Another reason is that this subject most significantly

affects students’ orientation for further studies and choosing their profession. Good programmers in

elementary schools are interested in continuing their studies in high schools where they will be able to

continue to develop their programming skills. It’s similar with choosing university and choosing their

profession. A positive relationship with programming is also developed by various programming

competitions that allow confrontation with competitors. Success of students in programming competitions

often “mark them for life” and influence their professional orientation and which profession they are likely

to choose. A programming teacher therefore has to be a good programmer who knows how to guide

programming talents, give advice even with complex programming tasks, get them ready for programming

competitions, mainly for programming Olympics.

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 322

1.2. Programming in first year of study

There are several subjects oriented on programming in study programs for teachers of informatics

and computer science. This article focused on the first year of study which offers Algorithms and

programming. It’s a two-semester subject oriented on creating good fundamentals and acquiring basic skills

from algorithms creation, problem solution and their programming.

This class comprises two-hour lectures and two-hour or three-hour training every week in winter

and summer semesters for first year students. In some educational programs it is possible to choose a

parallel seminary from programming that is mainly focused on various special algorithms and for solving

tasks from programming Olympics.

In the first semester the programming subject is oriented mainly on algorithms creation, optimization

of algorithms, basic control structures and their usage in solving problems. Only basic from programming

are being taught: structure of a program, basic data types, only an array from data structures and basic

control structures. A meta-language similar to Pascal is being used to express process of solving problems

during lectures. Programming language used in practice classes and for implementing program applications

isn’t strictly given. Students often choose a programming language they learned at high school. It’s usually

some version of programming language Pascal (Free Pascal, Borland Pascal,...), Lazarus, C, C++, C#, etc.

The choice of first programming language can be considered to be very important because it plays an

important role in forming the programming thinking of a programmer. When learning other programming

languages, the first one is used as a reference programming language. The programmer focuses on

differences not only in syntax, but also in semantics and implementation details between new and old (first

well-known) programming language. That is why, classes are focused mainly on handling programming,

programming thinking and its development regardless of programming language which only serves for

checking whether program solution is correct. Hence, it can be said that that programming, not

programming language (or syntax of a programming language respectively) is being taught.

1.3. Computer Games in Algorithms Creation and Programming

Students wishing to become informatics teachers will encounter first algorithm in the first semester

of Algorithms and programming class. It’s a type of algorithm that isn’t based on mathematical methods of

solving a problem. Algorithms besides making sure that rules are being followed also contains a winning

strategy. It should serve as a motivation mainly for students of informatics teaching program, who don’t

study mathematics as their secondary approbation subject (Basler & Dostál, 2016). Algorithms are not only

used as a process of solving mathematical, technical or economic problems, but also to show how to solve

game situations, language problems and even problems from various parts of everyday life (Basler, 2016;

Chráska, 2016a, 2016b). Even those who do not like mathematics can became good programmers, creators

of effective software applications and also good teachers of informatics. The most simplified version of a

game (named NIM) is as follows. Two players are playing the game (one of them is a computer). At the

beginning they have a pile of matches available with quantity of N. Players take turns to remove the matches

in quantity of <1-M>. The player who takes the last match, loses. Players decide who will start the game.

It’s not a problem to construct an algorithm that manages the game which monitors following of the rules

and realizes its own turn. The computer therefore realizes its own turn by generating a random number from

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 323

the <1-M> interval. After that a player’s turn follows and computer checks whether player doesn’t want to

take more matches than M, or more than there are matches on the pile in a given moment. After every

correct turn the computer checks whether remaining matches doesn’t equal one, or whether the player,

whose turn it is, didn’t take all the matches on the pile. At that moment it ends the game and declares who

has won and who has lost. What is interesting is whether a winning strategy exists and whether a player

(computer) controlled by a program can actually win. A closer analysis of the game and its rules will reveal

that the game has 3 parameters (input data), that serve for defining starting state and defining the game

state. They are: N, M, and who starts the game. If computer has only one parameter (input value for a

program) for itself, then it is possible to build a winning strategy into the program. For example, if the

player sets 2 parameters: M and who starts, then a computer can calculate N (starting quantity of matches),

so it can defeat the player. In a situation when the M and who starts (in case when the play start the player)

is set, N = (M+1)*RN + 1 (RN is a random number that indicates the number of turns, one turn is player’s

and computer’s one step combined). Then it’s enough for a computer to always draw (M-NP), where NP is

number of matches that were drawn by the player. In a case where M is given and a computer starts the

game N = (M+1)*RN + 1 + NC (NC is a random number from the <1-M> interval, which is number of

matches that is removed at the beginning, namely in the first turn). The detailed description of this algorithm

can be found in the textbook (Stoffová, Czakó, & Végh, 2015).

A simple computer game for creating sorting algorithms, winning strategy and development of

algorithmic thinking can be used. In this game, the player’s task is to sort boxes. The game has 3 levels of

difficulty depending on number of boxes that need to be sorted. The player has a double weight scales

available for sorting boxes from the lightest to the heaviest. The task for the player is to put the boxes on

hooks. The player has to be careful, so he/she does not put heavier box that it can bear on any hook. It is

necessary for a player to use the scale as seldom as possible to get better results. Weights of boxes in the

first level are 1, 2 and 3 kg. In the second level the number of boxes is five. Finally, in the third level of

the game the player’s task is to sort seven boxes. Using simple “linear” sorting algorithms and their

combination it is not possible to get better results than algorithms with complexity of O (n2). Gradually

improving the process of solving the task, the player will get to work his way to algorithms with complexity

of O (n*logn) e.g. to Quicksort. This game is also a good example of didactic computer game which is the

topic of semester thesis of students at the end of second semester.

The website http://ani.ide.sk/ can be referred to, to understand how different sorting algorithms work

where there is whole set of visualized algorithms, from simple to complex one, presented. Whole group of

animation-simulation models of sorting different objects (cards, bars, etc.) demonstrates (very often in

playful funny way) how sorting algorithms work. Many of the simulation models are just visualization of

the sorting processes, while others allow certain interaction from the user (Pšenáková, 2016). It’s a suitable

didactic application for demonstrating how sorting algorithms work implemented in programming language

Delphi (Figure 01).

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 324

Figure 01. Visualised sorting processes by SelectSort and Insertsort

For deeper analysis of sorting algorithms and discovering of their properties this application was

specifically used. Besides visualized graphic model it also contains written algorithmic code. Line cursor

shows which part of an algorithm is being currently executed in the source code. It allows a learner to

analyse 5 basic sorting algorithms: Simple Sort, Select Sort, Bubble Sort, Insert Sort and Quick Sort. The

user can study the source code, compare algorithms between each other, search for differences among them

and discover their properties which he can then use for writing his own program codes (Végh, 2016, 2017;

Végh & Stoffová, 2016, 2017). The student’s task was to at first understand how individual sorting

algorithms work, comment source (pseudo)code and verbally describe and express in writing every

algorithm based on visualized simulation experiments with a model. His task was also to explicitly express

sorting state in defined moment when the sorting animation stopped (so express it in certain values of

control variable cycles). Students were also given task to discover informational meaning of sorted object’s

colour. Objects of sorting were columns of various (random) height. Columns weren’t sorted at the

beginning.

1.4. Problem-based and Project-based Teaching of Algorithms and Programming

In the first semester of teaching programming, problem-based teaching and creating of algorithms

was based on analysis of problems and searching for a suitable way of solving them. In this phase example

solutions, analysis, comparison and evaluation of two or more correct solutions were used, and moving

from simple to difficult, the design from top to bottom and from bottom to top was applied. Students

individually solve parts of problems and learn how a problem can be represented in a computer by data and

how to formalize its solution. The last thematic unit in the first semester is special algorithms, which are

dominated by sorting algorithms. To understand them and to show how they work, various computer games

and graphic interactive visualized simulation models were used. In the second semester problem-based and

project-based learning and teaching were fully applied. Every student chose a didactic game as a topic for

their semester thesis (Stoffová, 2018). During the semester general problems of computer games

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 325

development were studied. A preview of the researcher’s computer games, or computer games that were

created by students in past years was used as a motivational tool (Kožlej, 2018; Lapšanská, 2018). Students

learned certain patterns on how to deal with parts of programming problems by analysis of the implemented

game and explanation of the way they have solved individual functional parts of the program. Every

implementation of a computer game has certain problems in common. Game rules, monitoring, winning

strategies, strategies for getting good results, evaluation of the game situation and generating optimal next

steps, evaluating the player’s performance, defining the level of difficulty are serious individual algorithmic

problems of every computer game and its implementation. Programming and implementation of computer

games has a lot of common problems were dealt with at practice classes while simultaneously building

library of procedures, functions or objects and object classes respectively. Students can then use these

functional elements when creating their own game. These problems concern ensuring the interactivity of a

game, controlling dynamic objects of a game using a mouse, cursor keys and so on, creating of a menu,

explicit settings of choosing of starting conditions, creating new static or dynamic objects of a game,

pausing and stopping the game, saving the state, continuing the game or loading it, creating graphical user

interface (GUI), (Koreňová, & Veress-Bágyi, 2017) usage of music on a game, sound sequences, etc. Every

student then adapts these universal solutions to his game and customizes them for implementation of his

own game (Horvárth & Stoffová, 2016). This shows that by creating a computer game a programmer uses

all basic elements of programming (development) environment, data types and data structures which are

available in it and also contributes to creating its pre-programmed elements. By creating computer games,

the theory of programming is connected with developing and implementing of software applications

(Stoffová, 2016b). By doing so, the students are getting good programming experience and they are also

connecting theory with practice. Students present their finished projects in front of their classmates, they

defend their solutions and then students together with teacher evaluate the complexity of the solution.

Students submit project documentation together with their project where part of the documentation is also

the source code, specification and documentation for a developer. Evaluation of the project is then added

to 50 % portion of final subject classification.

2. Problem Statement

Didactic computer games are a powerful motivational tool; it develops not only algorithmic, logical

and programming thinking of students, but also creates basis for application of playful way of teaching in

their future educational practice. However, despite its many educational benefits, this particular branch of

education is not well explored. This study attempts to uncover information that will help to extend this field

of educational knowledge.

3. Research Questions

This research that has been conducted since 2010 at teacher training faculties of Slovak universities,

has been oriented on the influence of gaming and creating didactic computer games and playful illustrative

form of teaching for development of algorithmic thinking of students. The study intends to answer the

following questions: Can a computer game user (and creator) express game rules as an algorithm? Can

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 326

playing didactic computer games develop the algorithmic thinking of a player? To find answers, open and

also closed questions and tasks were used.

4. Purpose of the Study

The purpose of the study is identify whether a playing computer games that have their own rules,

develop algorithmic thinking of players. An experiment was carried out among students of teacher training

faculties in Slovakia where students were investigated as they participated in solving game situations using

algorithms to developing a winning strategy. Another purpose of the study was to find out how the use of

visualized animation simulation models in education to increase students' knowledge in algorithms and

programming. Based on the analysis of solved tasks expressed in text form and the determination of their

degree of accuracy, students were divided into several groups. The solution of the tasks expressed in text

form helped us to assemble a knowledge test with closed questions, which could be easily evaluated.

5. Research Methods

To obtain the answers to the research questions listed in section 3 various questionnaires and

knowledge tests with open and also closed questions and tasks were used. Tasks with the open solution

required students to express an algorithm – process of solving the gaming task. In a case of a computer

game based on sorting boxes with the lowest number of comparisons, the task was to verbally describe the

process of solving the problem. Players had to repeat the game until he solved the problem without any

unnecessary repeating the measurements. (See figure 02). The player had the opportunity to repeat the game

in a case he didn’t remember the process. During the game he figured out that he is following a certain

algorithm and that he is using a certain game strategy.

Figure 02. Start and successful end of sorting game on the third level

Unrestricted verbal description of the process of solving the problem was usually correct, but it

was not always complete and precise. While identifying and analyzing the process of solving the problem

we have found out that the students at first used simple linear sorting algorithms with quadratic difficulty

(O (n2) and then gradually started using algorithms with difficulty of O (n*logn), or that they have used

their combination respectively. Students had problems with expressing the solving process by using the

source code and they were only seldom able to debug their program.

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 327

In the next phase of teaching, visualized simulation models were used, most of which can be found

on the website ide.sk and also other own educational software supported the gamification of learning. These

were considered useful: in which source code was shown together with the sorting animation, as pointed

out in section 3 of this paper.

Using the questionnaire method, it was discovered whether students understood how individual

algorithms work, what are differences between them, which of those can be used for optimization of the

program. Respondents were informed that the data from filled out questionnaire will be used for improving

the learning and increasing its quality. That’s why they were asked to answer honestly “from the heart” as

research ethics were strictly observed and data would only serve as a criteria for evaluating and comparing

the results from the questionnaire. They wrote their answers directly into the electronic questionnaire.

Range, depth and length of the answers wasn’t limited in any way and the respondent could use as many

lines as he/she needed to express his/her opinion on a given question.
Besides a few personal data, the questionnaire contained group of questions oriented on evaluating

the didactic application and determining its value for teaching and learning process. Respondents have rated

the quality of the application. They answered questions like whether the teaching aid is a suitable didactic

tool, whether the application has helped them to understand individual algorithms, whether it is interactive

enough, whether the controls are intuitive enough, whether the illustrative rate of the application was

sufficient and whether they would recommend such teaching tools in the education process. They wrote

their answers into the 6-point scale.

The general task was: Characterize, describe (based on your observations) how the individual

algorithms work and what are their properties. It’s up to you how detailed it will be – you have enough

time and space.

The application presented following algorithms: Simple sort, Select sort, Bubble Sort, Insert sort

and Quick sort. Considering that in the pre-research the description of algorithms was open and not very

complex, it was difficult to evaluate complexity of the solution, so we have guided the respondents to

everything a task solution should contain. We asked them explicitly to solve these tasks for given

algorithms:

a) Briefly describe the working principle of the algorithm as you have observed and understood it

based on the animations during the simulation experiments.

b) Briefly describe (in your own words) the algorithm’s properties as you have discovered them

during animations. (Comment on the length of the sorted/unsorted part in individual phases of

the sorting process, how cycles were controlled, how many times they were repeated, if

statement on when the cycle should stop, algorithm difficulty, etc.).

c) Estimate the time (in minutes) that you have devoted to understanding the algorithm.

If there was unlimited amount of time for filling out the questionnaire, when students answered the

questions during their preparation for an exam for example, the answers were current and detailed enough.

Results from evaluation of time required for students to understand the algorithm were interesting.

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 328

For linear sorting algorithms like Simple sort, Select sort, Bubble Sort and Insert sort respondents

have stated values from the interval of (2 - 30) minutes. In a case of Quick sort sorting algorithm, it was an

interval of (5 - 45) minutes.

Solutions expressed in the verbal form (in written form) of the expressed algorithm was difficult to

evaluate. Using the analysis of content of 94 filled-out questionnaires by the students of informatics

teaching program from the last 4 years, the answers were categorized according to the tasks from the

questionnaire into 5 groups; answers that were: 1st complete and correct, 2nd correct and incomplete, 3rd

partly correct and incomplete, 4th mostly incorrect and 5th incorrect algorithms. We can state that no answer

was sorted into 4th and 5th groups. Only 8 (8.5%) answers fell in the 1st group, the 2nd group was the largest

with 64 (68.1%) and 22 (23.4%) answers fell in the 3rd group.

Knowledge tests for verification of the effectiveness of didactic computer games and interactive

visualized animation-simulation models were constructed. The knowledge of the students from the area of

sorting algorithms before and after using these didactic software tools were evaluated. The knowledge test

contained the following 7 statements.

1. The algorithm always compares two neighbouring elements in the array.

2. The algorithm compares every element with all elements located behind it.

3. First, the algorithm chooses one element from the unsorted part; next, the algorithm exchanges the

selected element with the first or last element of the unsorted part.

4. In the unsorted part of the array, the smallest element is always moved to the beginning (the

sorted sequence is starting to form in the beginning of the array).

5. In the unsorted part of the array, the largest element is always moved to the end of the sorted

sequence is starting to form in the end of the array).

6. Elements in the sorted part of the array (in the beginning or the end of the array) are not modified

(not moved) during the sorting.

7. Elements in the sorted part of the array (in the beginning or at the end of the array) can be modified

(moved) during the sorting.

The student should indicate whether the statement is true for sorting algorithms: Simple sort, Select

sort1 (MinSort), Select sort2 (MaxSort), and Bubble Sort.

6. Findings

Students had different knowledge about the sorting algorithms; therefore they were asked to fill out

a pre-test before the experiment. Students had to decide which statement-algorithm combinations are true.

Because there were students with no previous knowledge about the sorting algorithms, they were asked to

mark only those answers in both tests they knew, thus, diminishing the number of students’ guesses. Next,

students had time to experiment with the game-based animations and fill out a post-test. The results are

shown in the figure 03.

The first part of figure 03 shows accrual of correct answers/correct assertions and the second part of

figure 03 shows decrease of incorrect answers/assertions which concerned individual sorting algorithms

based on their basic functioning principles.

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 329

To determine, if these changes are significant, several paired sign tests were constructed;

specifically chosen sign tests instead of paired-samples tests because the assumptions of the latter tests were

violated – the data were not normally nor symmetrically distributed.

First, the increase in the correctly marked true algorithm-statement combinations was measured. Of

the 92 participants involved in the experiment, 81 students marked more true algorithm-statement

combinations, 5 students marked less true algorithm-statement combinations, and 6 students marked the

same number of algorithm-statement combinations in the post-test compared to the pre-test. Overall,

participants marked more true algorithm-statement combinations in the post-test (median: 11 marks) than

in the pre-test (median: 7 marks), the statistically significant increase in the median of the differences is 4

marks, z = 8.087, p < 0.0005.

Figure 03. Percentage of correctly marked true algorithm-statement combinations and incorrectly marked
false algorithm-statement combinations in pre-test and post-test

The decrease in the incorrectly marked false algorithm-statement combinations was also measured.

Of the 92 participants involved in the experiment, 61 students marked less false algorithm-statement

combinations, 23 students marked more algorithm-statement combinations, and 8 students marked the same

number of algorithm-statement combinations in the post-test compared to the pre-test. Overall, participants

marked less false algorithm-statement combinations in the post-test (median: 2 marks) than in the pre-test

(median: 4 marks), the statistically significant decrease in the median of the differences is -1 marks,

z = -4.037, p < 0.0005.

After these positive results, the students’ answers were examined more deeply separately for every

sorting algorithm in the pre-test and post-test.

In the post-test, the number of signed correct statements for each listed sorting algorithm was higher

than in the pretest, and the number of signed misstatements decreased.

7. Conclusion

The researcher’s experiences and results of the research show that playing suitable didactic games

can be a source of spontaneous acquisition of new knowledge. Selected didactic games were tested to

determine whether playing them contributes to the development of the algorithmic and strategic thinking

54
.7
%

18
.2
%

83
.7
%

11
.0
%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

True algorithm-statement
combinations

False algorithm-statement
combinations

Pre-test Post-test

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 330

of the player. It may be assumes that each player develops their own winning strategy while solving their

game situations, which they will gradually improve and optimize until they reach the optimal solution.

Based on the analysis of selected didactic game, its rules can be defined as the didactic value of the

game. Based on optimal solutions of gaming tasks advice to teachers can be formulated in the way that

playing has a didactic benefit for achieving the educational objectives.

Didactic computer games are a powerful motivational tool, they excite the attention of pupils and

students and they keep it for a longer time than the teacher would be able to keep it in a common didactic

situation (Stoffová, 2018). Students’ knowledge is deeper and more permanent when they acquire it through

their own experience while employing the principles of a constructivist theory of learning. Students and

pupils are playing computer games voluntarily and they do not realize that they are learning.

Creating of computer games is a good topic for problem-based and project-based teaching of

algorithmizing and programming at every degree of education system. It is extremely useful for students of

informatics teaching program. It develops not only algorithmic, logical and programming thinking of

students, but also creates basis for application of playful way of teaching in their future educational practice

Acknowledgments

The paper was supported by project Palacký University Olomouc IGA_PdF_2018_030 “An analysis

of the use of educational computer games and online educational courses in secondary schools in relation

to potential addictive behaviour in students in relation to gaming”.

References

Basler, J. (2016). Počítačové hry a způsob jejich využívání u žáků základních škol. Trendy ve vzdělávání,
9(1), 10-19.

Basler, J., & Dostál J. (2016.) Analysis of studies focused on research of computer games’ influence with
an accent on education and people’s psychics. In: ICERI2016 Proceedings. Seville, SPAIN: 9th
International Conference of Education, Research and Innovation, s. 33-40.

Chráska, M. (2016a). Computer Games – Preferred Way of Using ICT by Grammar School Students. The
European Proceedings of Social & Behavioural Sciences, 606–616.
https://doi.org/10.15405/epsbs.2016.11.63

Chráska, M. (2016b). Grammar School Students and Their Typology According to Dependence on
Computer Games. In SGEM 2016 Conference Proceedings. Sofia: STEF92 Technology Ltd., pp.
795–802. https://doi.org/10.5593/SGEMSOCIAL2016/B11/S03.101

Chráska, M. (2016c). Žáci gymnázia a míra jejich závislosti na počítačových hrách. Trendy ve vzdělávání,
9(1), 110-114.

Chráska, M., & Basler J. (2016). Research of Computer game addiction among the 18-year- old students
of general upper secondary schools in the Czech Republic. In: ICERI2016 Proceedings. Seville,
SPAIN: 9th International Conference of Education, Research and Innovation, s. 69-78.

Czakóová, K. (2016). Creation small educational software in the micro-world of small languages. In:
Teaching Mathematics and Computer Science. 14(1), 2016/1, 117. Debrecen : University of
Debrecen.

Czakóová, K. (2016). Tvorba vlastných aplikácií v Imagine. In: Úvod do programovania v prostredí
mikrosvetov : vysokoškolská učebnica. Komárno : Univerzita J. Selyeho, 2016. 34-55.

Dostál, J. (2009). Výukový software a didaktické počítačové hry - nástroje moderního vzdělávání. Journal
of Technology and Information Education, 1(1), 24-28.

https://dx.doi.org/10.15405/epsbs.2019.01.30
Corresponding Author: Veronika Stoffová
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2357-1330

 331

Horváth, R., & Stoffová, V. (2016) The Graphical support for the didactic games creation. In: XXIXth
DIDMATTECH 2016: New methods and technologies in education and practice :2nd Part. Ed. V.
Stoffová, L. Zsakó, 1. vyd. Budapest: Eötvös Loránd University in Budapest: Faculty of Informatics,
2016, s. 67-82.

Koreňová, L. I., & Veress-Bágyi, I. (2017). A kiterjesztett valóság alkalmazása az általános iskolai
matematika tanulásban (Inquiry-Based Mathematics Learning by Applying Augmented Reality in
the Primary School). In: XXXth DidMatTech 2017: New Methods and Technologies in Education
and Practice: 2nd part. Ed. V. Stoffová a R. Horváth. 1. vyd. Trnava: Trnava University in Trnava,
Faculty of Education, 75 – 86.

Kožlej, J. (2018). Didaktické počítačové hry v projektovom a problémovom vyučovaní programovania.
[Bakalárska práca]. – Trnavská Univerzita v Trnave. Pedagogická fakulta; Katedra matematiky a
informatiky. - Vedúci: Prof. Ing. Veronika Stoffová, CSc., 2018. 58 s.

Lapšanská, Š. (2018). Animačno-simulačné modely na podporu vyučovania základov algoritmizácie a
programovania, Diplomová práca, Trnavská univerzita v Trnave, Pedagogická fakulta, Katedra
informatiky. Vedúci diplomovej práce: prof. Ing. Veronika Stoffová, CSc. Trnava: Pedagogická
fakulta TU, 2018, 72 s.

Pšenáková, I. (2016). Interactive applications in the work of teacher. In XXIXth DidMatTech 2016.
Budapest: Eötvös Loránd University in Budapest, Faculty of Informatics, pp. 92–100. Retrieved
from https://www.mii.lt/informatics_in_education/htm/infedu.2017.07.htm.

Stoffa, V., Czakó, K., & Végh, L. (2015). Programozás a gyakorlatban: Algoritmizació és progrsamozás
II. (Programovanie v praxi) Komárom: Selye János Egyetem Gazdaságtudományi Kar, 2015. 1. vyd.
124 s.

Stoffová, V. (2016a). Počítačové hry a ich klasifikácia. Trendy ve vzdělávání, 9(1), 243-252.
Stoffová, V. (2016b). The Importance of Didactic Computer Games in the Acquisition of New Knowledge.

European Proceedings of Social and Behavioural Sciences,16, 676-688.
Stoffová, V. (2018). Didactic computer games – a playful form of teaching and learning. In: Education &

Educational Research (in press)
Végh, L. (2016). Javascript library for developing interactive micro-level animations for teaching and

learning algorithms on one-dimensional arrays. Acta Didactica Napocensia, 9(2), 23–32.
Végh, L. (2017). A programozás tanulásának és tanításának támogatása elektronikus tananyagba beépíthető

interaktív animációs modellekkel. (PhD theses). Eötvös Loránd Tudományegyetem Informatika
Kar, 2017

Végh, L., & Stoffová, V. (2016). An interactive animation for learning sorting algorithms: How students
reduced the number of comparisons in a sorting algorithm by playing a didactic game. In: Teaching
Mathematics and Computer Science, 14(1), 45–62. Institute of Mathematics – University of
Debrecen.

Végh, L., & Stoffová, V. (2017). Algorithm Animations for Teaching and Learning the Main Ideas of Basic
Sortings. In: Informatics in Education, 16(1), 121-140. https://doi.org/10.15388/infedu.2017.07

