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Abstract 
 

This study aims to develop pavement roughness models using multiple linear regression equation and 
artificial neural network (ANN) modeling approaches. The model database uses International Roughness 
Index (IRI) data included in a national database for the Western region. Datasets for asphalt pavement with 
bound base at 32 different locations are considered in the analysis. The variables included are IRI, pavement 
age, design structural number, equivalent single axle load (ESAL), and also a dummy variable for 
construction number. The LTPP data was used to compare predicted IRI values using the improved linear 
regression equation with R of 0.573, with different types of ANN models. The ANN models considered are 
static ANN, feedback ANN, and dynamic ANN. The verifications of the improved dummy regression 
equation predictions for 39 data points showed only -2.9% difference compared to the mean IRI. 
Comparisons between the mean predicted IRI values showed that the enhanced dummy regression equation 
gave a better prediction compared to the ANN model with a minimum error of 37.9%. Out of three ANN 
models, the feedback ANN provided a better prediction compared to the static and dynamic ANNs. Further 
analysis showed that the predictions using training all data sets are more accurate with R ranged from 0.740 
to 0.827. It is important to consider ESAL and construction number for an accurate and reliable future IRI 
prediction.   
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1. Introduction 

One of the goals of the pavement design and asset management is to increase pavement life 

considering the effects of pavement material and environment on asphalt pavement performance. One of 

the primary component of serviceability-performance concept is pavement longitudinal roughness, 

implemented in the improvement of American Association of State Highway and Transportation 

(AASHTO) pavement design procedures from 1960 to 1993  (AASHTO, 1993). Post-2000 pavement 

design guide that considers stresses, strains, and deflections within a pavement structure, described asphalt 

surface roughness as smoothness and measured as part of highway pavement asset management system 

(Uddin, Hudson, & Haas, 2013; Mohamed Jaafar, Ahlan, & Uddin, 2015). In life cycle assessment of 

pavement design alternatives toward sustainable road infrastructure development, the future IRI prediction 

is an important factor for a long-term asphalt pavement maintenance cost-benefit ratio projection. 

 

1.1. Review of relevant literature 

Road roughness in particular indicates ride quality of any road users (AASHO, 1962). The IRI was 

the current standard roughness indicator being used worldwide. Meegoda and Gao (2014) studied the time-

sequence surface roughness data of the General Pavement Study (GPS) test sections and developed a model 

to predict surface roughness progression as the pavement age increases. The final model is shown in 

Equation 1. 

ln 𝐼𝑅𝐼𝑖+1 − ln 𝐼𝑅𝐼𝑖 = (𝛼𝑖+1 ∗ 𝑡𝑖+1
0.9715 − 𝛼𝑖+1 ∗ 𝑡𝑖

0.9715)
.
                Eq. 1 

The alpha (α) describes the deterioration rate of the pavement as a function of cumulative traffic 

loads (KESALs/year), structural number (SN), freezing index (FI), and annual precipitation (AP). The 

General Pavement Study (GPS) 1 data sets from 13 states were used to validate the model. The reliability 

of the roughness progression of the asphalt pavements was modelled using the Weibull distribution. The 

results showed that the difference in the median roughness value between the measured and predicted values 

was not significant.  There is no correlation coefficient, R value of the measured vs. estimated IRI plot was 

reported; however, the plot indicated that the data points fit closely to the equality line, which suggests a 

reliable model.   

Madanat, Nakat, Farshidi, Sathaye, and Harvey (2005) developed a mathematical model to predict 

the progression of the asphalt pavement roughness. In this study, the linear regression equations were 

developed to predict increment of roughness progression (∆IRI) using Washington State’s Pavement 

Management System (PMS) database. Eight independent variables were used which include the IRI in 

previous year, ESAL changes in the year of observation, cumulative ESAL, base thickness, total asphalt 

layer thickness, time since last asphalt overlay or bituminous surface treatment (BST) overlay, minimum 

air temperature, and yearly precipitation. In addition, three dichotomous variables for asphalt overlay, BST 

overlay, and maintenance application were also considered. The linear regression’s R of 0.725 was 

observed; however, no R value of the measured vs. predicted IRI was reported.   

Attoh-Okine (1994) applied the (Artificial Neural Network) ANN’s back-propagation method to 

evaluate the capabilities of the ANN to predict roughness progression in the flexible pavement. An 

extensive research investigated structural deformation as the factors of modified SN, increment of traffic 
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loads, severity of cracking and thickness of cracked layer, and incremental variation of rut depth. Kargah-

Ostadi, Stoffels, and Tabatabaee, (2010) developed the changes in IRI over time roughness prediction 

model for rehabilitation recommendation using the ANN. The statistical analysis on 20 variables was 

conducted to determine any significant correlation with IRI. Only eight variables were included in the final 

model. The R of 0.979 was observed which shows that it is feasible to use IRI as the prediction criteria. 

 

1.2.  Comparison of the Southern region enhanced regression equation with the AASHTO 
MEPDG equation 

Mohamed Jaafar et al. (2015) developed the enhanced linear regression that incorporates 

dichotomous (dummy) variable for construction number, namely CND for the LTPP southern region test 

sections. Figure 1 illustrates the IRI values (both measured and predicted) for data sets in Southern Region. 

The improved regression equation was included in the plot and high R value of 0.865 between the measured 

and predicted IRI values was observed. The comparisons using the enhanced regression equation and the 

MEPDG model were conducted based on 10 independent data sets from 1990 to 1995 (FHWA 2009; 

MDOT, 2013).  

 

 
Figure 01. Model database: Comparison between the measured and predicted IRI values for Southern 

region (1990 to 2006) 

 

The overall results showed that the MEPDG forecasts are deprived for most of the data sets. The 

enhanced regression equation showed a better R of 0.874 compared to the predictions by the MEPDG 

regression equation (R is 0.819). In addition, the mean IRI values predicted by the MEPDG equation is 

about 23% higher than the measured IRI (mean value). The difference is greater compared to the enhanced 

equation’s prediction with only 5.5% more than the mean measured IRI value (Mohamed Jaafar et al., 

2015).  A similar approach was used to develop the enhanced dummy regression equation to assess the 

reliability of the equation to predict future IRI value in the Western region. However, no comparison with 

the MEPDG equation will be conducted since the rut depth data sets for GPS 2 in the Western region are 

missing completely, either from online LTPP database or LTPP standard data release 26.0 CDs.      
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2. Problem Statement 

Existing road fatalities statistics indicate that there is a need to maintain acceptable road condition 

over time. This goal is possible if the enhanced predictions models are used in the pavement structural 

design. The literature review to date indicates that the lifetime maintenance and rehabilitation (M&R) 

history is not considered in asphalt pavement condition deterioration progression modeling, including the 

mechanistic-empirical pavement design equations. In the historical asphalt pavement database records of 

the LTPP research program of the National Academy of Sciences, the M&R sequence is denoted by the 

construction number (CN). Therefore, there is a need to consider the CN in the pavement condition 

deterioration modeling.   

  

3. Research Questions 

Evaluation and enhancement of condition deterioration progression models are conducted using both 

multiple linear regressions and ANN modeling methods. Asphalt pavement surface roughness explained 

by the International Roughness Index (IRI) is the focus of this research. The IRI roughness condition 

deterioration progression modeling is conducted to evaluate the following research questions: 

 Is the use of the CN as a dummy variable in the enhanced condition deterioration predictive 

model equation will improve the reliability of the equation with lesser error? 

 Is the use of ANN modelling method will improve the prediction of IRI value as compared to 

the multiple linear equation approach? 

 Between ANN’s statistic, feedback, and dynamic approaches, which method will give the best 

prediction for future IRI roughness values.          

 

4. Purpose of the Study 

The study aims to develop an enhanced asphalt pavement roughness condition deterioration model 

that considers the following independent variable: i) initial IRI (IRI0), ii) cumulative ESAL, iii) pavement 

age, iv) structural number, and v) construction number as a dummy variable (CND). The roughness 

deterioration prediction models were developed using the multiple linear regression equation and the ANN 

approaches. Only test sections with asphalt layer compacted over bound base (GPS 2) in the Western 

climatic region of the LTPP are selected for further study. 

 

5. Research Methods 

The IRI data are compiled for all 32 test sections in the LTPP Western region (only GPS 2). The 

state-wide LTPP sections follows: California (15), Wyoming (8), Nevada (3), Arizona (2), Colorado (2), 

Montana (1), and Oregon (1). The IRI condition deterioration regression equations established in this study 

using historical data sets from 1990 to 2006. The enhanced condition deterioration prediction equation is 

verified using the actual data measured after 2006 (2007 to 2011) for test sections in Arizona, California, 

Montana, Oregon, and Wyoming. The formulation of the regression equation is similar to previous study 

by Mohamed Jaafar et al. (2015).   



https://doi.org/10.15405/epms.2019.12.53 
Corresponding Author: Zul Fahmi Mohamed Jaafar 
Selection and peer-review under responsibility of the Organizing Committee of the conference 
eISSN: 2421-826X 
 

 540 

5.1. Dependent variable 

In the enhanced dummy regression equation, average yearly IRI (average IRI values for both left 

and right wheel path) is selected as the dependent variable. The IRI values are measured with a minimum 

of five runs for each side. The processed yearly IRI data indicate approximately 46% of the IRI data are 

excluded from the database. Thus, the following methods are implemented to interpolate the missing yearly 

IRI data: 

 If the initial yearly IRI data are not available, the missing data are assigned with the same IRI 

value as the first measured IRI data. For example, the yearly IRI data in 1990 and 1991 are 

unavailable, and the first measured data is in 1992. Therefore, the IRI in 1990 and 1991 are 

assumed similar to the IRI value in 1992.    

 If the yearly IRI data are missing after the final year of the measured IRI, the subsequent years 

will have the same IRI value as the final measured IRI data. For example, the final yearly IRI 

data in 2004 are available. Thus the yearly IRI data for 2005 and 2006 are assumed similar to 

the yearly IRI data in 2004.      

 If the IRI data are missing in between two measured yearly IRI data, for example the IRI data 

are measured in 1990 and 1992, but not in 1991, then the IRI value in 1991 is the average of 

IRI value measured in 1990 and 1992. 

Figure 2 indicates the measured and interpolated IRI values for test section 06-2647 in the California, 

together with the cumulative ESAL traffic application data. A total of 17 data points are plotted and the IRI 

value in 1990 is interpolated by considering mean IRI value between 1989 and 1991. The IRI values for 

1995 and 1996 are the average yearly IRI values between 1994 and 1997. If necessary, the yearly IRI value 

for 2008 is assumed similar to the yearly IRI in 2007. The ESAL data are the cumulative values of the total 

annual ESAL. The yearly IRI and the cumulative ESAL exhibit a strong correlation with R equal to 0.927. 

 
Figure 02. IRI values and cumulative ESAL for the GPS 2 test sections in California 
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5.2. Independent variable 

Four independent variables of IRI0, cumulative ESAL, SN, and age are selected to develop the 

enhanced regression equation. Pre-processing of the yearly IRI data showed 48.5% of the annual ESAL 

traffic data are unavailable from the LTPP database. Therefore, the ESALs are determined based on the 

average annual rate of growth (AARG) concept (Mohamed Jaafar et al., 2015). The authors also described 

in detail each variable used in the prediction equations. 

 Yearly IRI: The yearly IRI are between 0.319 m/km to 3.208 m/km, with an average value of 

1.401 m/km. The Standard Deviation (SD) and Coefficient of Variation (COV) are 0.561 

m/km, and 40.0%, respectively.  

 The IRI0 has an average value of 1.274 m/km. The SD and COV are 0.374 m/km and 29.4%, 

respectively. The correlation between the yearly IRI and IRI0 was 0.464.  

 Cumulative ESALs: The values range from 18,000 to 26,684,104 with an average value of 

3,511,167. The SD and COV are 5,001,990 and 142.5%, respectively. The cumulative ESAL 

traffic and yearly IRI showed R value of -0.128. Cumulative ESAL data indicated higher 

variation as compared to the yearly IRI data. 

 The average SN is 5.4 with the SD equal to 1.4. The calculated COV is approximately 26%. 

The SN ranged from 2.9 to 8.8. Repetitive traffic load impacts affected the IRI and structural 

capacity. A weak negative correlation between yearly IRI and SN (R = - 0.145) was observed. 

The IRI is relatively higher for a pavement structure with lower SN value. 

 Pavement age:  Range from three years (test section 56-7773, Wyoming in 1990) to 39 years 

(test section 06-7491, California in 2006) with an average value of 21 years. The SD and COV 

are both 7.5 years and 35.8%, respectively. The yearly IRI is positively correlates with 

pavement age with Pearson’s R equal to 0.197, which shows that the IRI increases with 

pavement age. 

 

5.3. Description on the data used for IRI modeling in the Western region 

 The data sets for 32 test sections are downloaded from the LTPP database and the IRI0 data are 

determined from the downloaded data sets. 

 The IRI values from left and right wheel path from different runs are averaged and noted as 

yearly IRI. The missing yearly IRI data are determined as discussed in Figure 1. These 

statistics are computed for all test sections with IRI0 less than 2 m/km, except for the test 

sections 08-2008 and 08-7781, both at US 82 highway in Bent County, Colorado.  

 A total of 32 LTPP test sections are analysed. The average IRI0 is 1.274 m/km with the SD of 

0.374 m/km and the COV of 29.4%. 

 The measured yearly IRI data from the database and the missing yearly IRI values estimated 

using AARG (Mohamed Jaafar et al., 2015) are considered in the analysis. 

The example of the interpolated missing ESAL values and the annual cumulative ESALs are shown 

in Figure 3. Test section 06-2647 is in Tuolumne County, California. The interpolated annual ESAL showed 

constant increments, corresponding to positive AARG of 1.5%. A few test sections showed negative AARG 

values, resulted in the smaller interpolated traffic ESAL values. 
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Figure 03. Test section 06-2647 in Califonia: Traffic data from 1990 to 2006 

 

Table 1 shows the correlations between each of the variables. About 544 data sets are included (17 

years x 32 test sections). The analysis discovered large variability in the yearly IRI data based on the COV 

value. The Pearson’s R, mean, SD, and COV values for IRI data shown are related to both measured and 

interpolated data. 

 

Table 01. SPSS: Correlation between variables considered in the analysis 

CN = Construction Number  

Combined CN1 to CN4 
Yearly 

IRI  
(m/km) 

Initial IRI,  
IRI0 (m/km) 

Pavement 
Age (Year) 

Structural 
number (SN) 

Cumulative 
ESALs 

Pearson’s 
R 

Yearly IRI 
(m/km) 

1.000 0.464 0.197 -0.145 -0.128 

Initial IRI, IRI0 

(m/km) 
0.464 1.000 0.225 -0.009 -0.149 

Pavement age 
(Year) 

0.197 0.225 1.000 -0.132 0.458 

Structural 
number (SN) 

-0.145 -0.009 -0.132 1.000 -0.077 

Cumulative 
ESALs 

-0.128 -0.149 0.458 -0.077 1.000 

Sig. (2-
tailed), ɑ = 

0.05 

Yearly IRI 
(m/km) 

 0.000 0.000 0.001 0.003 

Initial IRI, IRI0 

(m/km) 
0.000  0.000 0.840 0.000 

Pavement age 
(Year) 

0.000 0.000  0.002 0.000 

Structural 
number (SN) 

0.001 0.840 0.002  0.072 

Cumulative 
ESALs 

0.003 0.000 0.000 0.072  

Number of Sample, N 544 544 544 544 544 
Sample Mean, x̅ 1.401 1.274 20.8 5.4 3,511,167 

Standard Deviation, SD 0.561 0.374 7.5 1.4 5,001,990 
Coefficient of Variation, COV 

(%) 
40.0% 29.4% 35.8% 25.9% 142.5% 
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The IRI0, Age, SN, and Cumulative ESAL indicated statistically significant correlations with the 

yearly IRI. All variables showed statistically significant correlations except for SN with IRI0 and SN with 

cumulative ESAL, respectively with p-value more than 0.05. In addition, the observed R values are less 

than 0.1. This resulted in no significant correlations between the variables. There are some variations in 

each variable depicted by COV less or equal to 40%. The exception is the cumulative ESAL with COV of 

about 142.5%, showing large variation in traffic volume data. Higher variation in the data sets will produce 

a better enhanced dummy regression equation. 

 

5.4. Description on the construction number for the test section 04-1065 in Arizona 

Previously, Figure 1 described the yearly IRI time series data for only one test section with original 

construction number (CN1). The yearly IRI value consistently increase every year except a slight decrease 

observed in 1992 and 1994. Commonly, majority of the test sections had more than one CN value. Only 

seven test sections remained at CN1. The remaining 25 test sections indicated more than one CN values. 

Four test sections recorded CN1 to CN6 (04-1065, 06-2002, 06-2040, and 56-5772). As an illustration, 

Figure 4 shows multiple CN values for section 04-1065, located at Interstate 40, in Yavapai County, 

Arizona.  This test section recorded up to six construction numbers which as shown in Figure 4 plot. The 

vertical lines describe the year of each assigned CN value. For this test section, CN2 to CN3 were assigned 

after a local maintenance to patch the potholes was completed. In addition, CN4 and CN5 were assigned 

after the major maintenance of grinding, milling and surface overlay. These maintenance applications 

improved the road condition with smoother surfaces, thus reducing observed the IRI values. The IRI values 

at each subsequent CN decrease sharply as seen in CN5 and CN6 years. The yearly IRI values increase 

again until the subsequence maintenance and rehabilitation year. The yearly IRI and cumulative ESAL time 

series plot showed a strong correlation with R equal to -0.749. 

 

 
Figure 04. Test section 01-1065 in Arizona: construction numbers, cumulative ESALs, and yearly IRI 

from 1990 to 2017  
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5.5. Artificial Neural Network Modeling of IRI 

The static, feedback, and dynamic ANN analysis was conducted to develop the ANN roughness 

prediction models. The static ANN is the simplest and the most widely used network. It is a multi-layered 

feed-forward neural network that is trained using an error-backpropagation algorithm (Najjar, 1990). In the 

analysis, the best network performance was achieved after 20,000 training iterations on all training data 

sets. The feedback ANN is like the static ANN, except an additional independent variable was introduced. 

The new independent variable is the predicted IRI values from the static ANN. The dynamic ANN involves 

sequential analysis of each data set. For this sequential analysis purposes, each data set was duplicated five 

times using Visual Basic for Application (VBA) codes in Microsoft Excel (Yasarer, 2013). Once the 

dynamic ANN analysis was completed, only the predicted IRI values from the fifth data sets for each test 

section were considered for comparison purposes. 

 

6. Findings 

Previous study by Mohamed Jaafar et al. (2015) proved that using the CN as a dummy variable 

increased the regression’s R value. Initially, Equation 2 was developed in this study without considering 

CN with R of 0.507. 

 

𝐼𝑅𝐼𝑦 = 0.728 + 0.608(𝐼𝑅𝐼0) − 1.676 × 10−8(𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑆𝐴𝐿) − 0.053(𝑆𝑁) +

0.012(𝐴𝑔𝑒)             Eq. 2 
 

The CN indicates changes in all pavement layers due to major maintenance or rehabilitation 

treatment events and is a contributing factor for low R value of Equation 2. The CN1 was assigned to the 

specific test section included in the LTPP research program. The subsequent major or minor maintenance 

treatments changed the construction number to CN2, CN3 as mentioned by Mohamed Jaafar et al. (2015). 

The enhanced dummy regression equation that considered CN as a dummy variable was developed as 

described in Equation 3.  

 

𝐼𝑅𝐼𝑦 = 0.616 + 0.624 (𝐼𝑅𝐼0) − 1.582 × 10−8 (𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑆𝐴𝐿) − 0.028 (𝑆𝑁) +

0.017(𝐴𝑔𝑒) − 0.32 (𝐶𝑁𝐷)             Eq. 3 

The CND refers to the dichotomous (dummy) variable used to consider any major M&R treatments 

in the regression equation. Test sections with only minor M&R, for example patching potholes and 

compacted with truck tires, which is a local maintenance will be assigned CND equal to zero. For test 

sections with major M&R (milling and overlay process), the related CND is one. Without considering CN 

in the equation, the R value is 0.507, but when CND is introduced, the R value increased to 0.573. It is vital 

to consider the effect of CN related changes in the pavement structure. This statement is explained by an 

independent sample t-test described in Figure 4 table.  The t-test compares whether there is statistically 

significant difference between the mean of the yearly IRI between CN4 with respect to CN6 mean, and 

CN5 mean with CN6 mean. The analysis indicates that p-values are less than alpha value 0.05 for both 

pairs. This confirms that the mean IRI values for CN4 and CN5 are statistically significant, compared to 
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the mean IRI of data sets within CN6 period. This concept of using CN in the regression equation was not 

discussed in the MEPDG model development and implementation (FHWA, 2009). 

 

6.1. Verification of the enhanced dummy regression equation for the Western region 

Figure 5 shows the predicted and measured IRI values for all 544 data points associated with 32 

LTPP’s GPS 2 test sections used to develop enhanced dummy regression equation. The R of 0.573 is 

observed between the measured and predicted IRI values. The difference between the mean predicted IRI 

and the mean measured IRI is -0.9%. Therefore, the enhanced dummy regression equation fits the data 

reasonably well. A total of 39 measured IRI data sets from 20 test sections are verified with the predictions 

from the enhanced dummy regression equation as shown in Figure 6.   

 

 
Figure 05. Model database: Measured and predicted IRI values (1990-2006) 

 

 

 

Figure 06. Model verification: Measured and predicted IRI (m/km)  

 

The correlation between the measured and predicted IRI is 0.564. The difference between the mean 

of the predicted and measured IRI is -2.9%. The enhanced dummy regression equation works considerably 

well for the GPS 2 test sections in the Western region. The measured and predicted mean IRI values are 

approximately the same but the predicted values show less variation. 
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6.2. Static, feedback, and dynamic ANN models 

In developing the desired ANN models, the static and feedback ANN adopted similar number of 

training, testing, validation, and training all data sets as shown in Figure 07. 

 

 
Figure 07. Corresponding prediction accuracy measures for static, feedback, and dynamic ANNs 

 

The numbers of the inputs, hidden nodes, and output layers are denoted by IN-HN-OH, respectively. 

All ANN types have IRI0, cumulative ESAL, SN, and age as the independent variables. The feedback and 

dynamic AAN models consider the predicted IRI values from the static ANN as the additional independent 

variable. The models are verified using the same data sets used to verify the enhanced dummy regression 

equation.  Based on the information given in Figure 07, the feedback ANN is the best network to be used 

for future IRI predictions. The sum of squared error of prediction (SSEN) and the mean absolute relative 

error (MARE) for the feedback ANN model are the lowest compared with other ANN models. The R values 

(measured vs. predicted) are the highest compared to other ANN models. The static ANN showed fairly 

good predictions. However, the data sets used for model verification do not fit the dynamic ANN analysis 

approach. Further analysis was conducted to compare the IRI values predictions using 277 and 544 training 

data sets. The results showed that the prediction using training all 544 data sets indicated higher R values 

for all three ANN types. The ANN models were compared, and the key findings are summarized; 

 The R of 0.852 was observed for feedback ANN compared to 0.807 and 0.740 for static and 

dynamic ANNs, respectively. The observed percent difference is 37.9% for feedback ANN, 

39.7% and 46% for the static and dynamic ANNs, respectively.  

 Comparisons between the mean measured and predicted IRI values show that the enhanced 

dummy regression equation gave better prediction with only -2.9% differences compared to the 

feedback ANN model minimum errors of 37.9%.  

Therefore, for similar kind of data sets, it is recommended to use feedback ANN with training all 

data sets to predict future IRI values. 

 

6.3. Comparison between other IRI model with the Western region enhanced dummy 
regression equation 

Table 02 summarizes the R values and percent differences of the measured vs. predicted data sets 

for test sections in California and Wyoming. Meegoda and Gao (2014) equation in the literature review 

SSEN MARE R SSEN MARE R SSEN MARE R SSEN MARE R
Static 4-8-1 0.0058 19.877 0.902 0.0068 22.057 0.878 0.0087 24.813 0.837 0.0049 16.442 0.896

Feedback 5-8-1 0.0037 14.473 0.928 0.0044 16.388 0.915 0.0062 18.970 0.865 0.0045 15.258 0.904
Dynamic 5-4-1 0.0206 42.038 0.817 0.0237 44.869 0.764 0.0237 44.769 0.740 0.0174 38.781 0.807

Static 4-8-1 0.801 0.827
Feedback 5-8-1 0.781 0.852
Dynamic 5-4-1 0.433 0.740

ANN

No. of data points

Training AllTesting Validation Pearson's R (Measured vs 
Predicted) for 39 data points

Average 
Predicted IRI 

(m/km) (Training 
544 data)

Average 
Predicted IRI 

(m/km) (Training 
277 data)

2720

IN-HN-ON

133
133
665

544
544

Training AllValidation
277

1385

134
134

Training

670
277

TestingTraining
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section was verified and compared with the enhanced dummy regression equation developed for the LTPP 

Western region in this study. 

 

Table 02. Verification of the IRI equation from previous study and comparison with the enhanced 

dummy regression equation using data sets from test sections in California and Wyoming 

Model verification for test sections in California – (No-freeze climate zones) 

Equations References Pearson’s R for Measured 
vs Predicted IRI 

% difference compared to 
measured IRI (Average) 

Eq. 1 Meegoda and Gao (2014) 0.724 29.7% 
Eq. 3 Established in this study 0.456 17.6% 

Number of data points for verification = 10 
06-2002(2007), 06-2038(2011), 06-2647(2007), 06-2467(2007), 06-7452(2010), 06-7452(2011),  

06-7491(2007), 06-814992007), 06-8150(2007), 06-8202(2007) 
 

Model verification for test sections in Wyoming – (Freeze climate zone) 

Equations References Pearson’s R for Measured 
v.s Predicted IRI 

% difference compared to 
measured IRI (Average) 

Eq. 1 Meegoda and Gao (2014) 0.233 212.6% 
Eq. 3 Established in this study 0.447 25.0% 

Number of data points for verification = 6 
56-2015(2007), 56-2017(2007), 56-2019(2007), 56-2020(2007), 56-772(2007), 56-7773(2007) 

 

Data sets from the test sections in California and Wyoming were used to represent no-freeze and 

freeze climate zones, respectively (FHWA, 2006). The observed R values are 0.724 and 0.456 for Equations 

1 and 3, respectively. However, the enhanced dummy regression equation developed in this study showed 

a better prediction with only 17.6% difference between the measured and predicted mean IRI values 

compared to the model developed by Meegoda and Gao (2014).    Further analysis on the data sets from the 

test sections in Wyoming showed that the R values between 0.2 to 0.5. The enhanced dummy regression 

equation’s prediction is better with 25% difference compared with the prediction using Equation 1, 

approximately 213% difference from the mean measured IRI value. Equation 1 showed poor predictions 

since three out of six test sections verified (56-2015, 56-2017, 56-2020) recorded percent differences more 

than 300% each. The equation developed in this study provides a consistent prediction compared to other 

equation. Therefore, it is feasible to use the enhanced dummy regression equation for future IRI prediction. 

 

7. Conclusion 

The LTPP database is a reliable source for data collection used for pavement performance modeling 

studies. The study highlights the use of IRI as a long-term pavement performance index for maintenance 

and rehabilitation treatments. The key findings from the developed pavement roughness performance model 

for the Western region follow: 

 The verification results of the enhanced dummy regression equation predictions for 39 data 

points had a mean difference of -2.9% as compared to the measured IRI value (average). 

Comparison with Meegoda and Gao (2014) equation indicated that the enhanced dummy 
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regression equation showed a better prediction using the data sets for test sections in California 

and Wyoming. 

 The feedback ANN provided a better prediction compared to other ANN models.  

 The feedback ANN predictions using training all data sets showed higher R of 0.852 compared 

to the enhanced dummy regression equation. However, comparisons between the mean 

predicted IRI values showed that the enhanced dummy linear regression gave a better 

prediction compared to the feedback ANN model with the lowest error of 37.9%. 

The study shows that consideration of ESAL and construction number are important independent 

variables for accurate and reliable IRI roughness model. Future work is under way to develop similar 

regression equation for other regions.     
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