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Abstract 
 

As it is known, (I mentioned this) often solving a problem / exercise in a certain algebraic structure is 
quite difficult. That is why it is sometimes necessary to transfer the respective problem / exercise to an 
isomorphic structure with the given one and where it can be solved / studied more easily. But the problem 
of determining isomorphic algebraic structures at once is quite difficult for both pupils and students and 
teachers. In this paper we propose to build other structures of isomorphic (commutative) field with the 
field of rational numbers Q, on different subsets of the set Q, structures different from those known / 
presented so far. To begin with, we will see that if a and b are any two rational numbers, then on the set of 
rational numbers at most equal to a, so on the set of Q-∞,a, and on the set of rational numbers at least 
equal to b, so on the set Qb,+∞, we will be able to define such a structure. Moreover, all new structures of 
fields defined here will be isomorphic to each other. It will result, then, that there is a double infinity of 
structures of (commutative) fields of rational numbers, all isomorphic to each other, but also to the field 
(Q,+,⋅).    
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1. Introduction 

To begin with, we will try to answer the following question: 

What influence should logic have on the learning of Mathematics? 

This question shapes the sector of a fundamental problem of education through Mathematics, 

because not every notional mathematical content can be learned at once and, consequently, the content of 

the instruction must be ordered in a certain logical sequence.  

When the content of the training is logically ordered, it is arranged according to a hierarchy of 

principles and concepts that are supposed to be part of the discipline itself. In general, the mathematical 

knowledge taught in school is organized in a number of mathematical subdisciplines: 

i. Arithmetic, 

ii. Algebra, 

iii. Geometry, ..., 

Each being both a field of knowledge and a way of knowing. Each mathematical subdiscipline 

includes a way of thinking or investigating a world, a way that has proven its functionality over time. As 

the knowledge of Mathematics progresses, new sub-domains open up in front of the investigation: 

i. Trigonometry, 

ii. Analytical geometry, 

iii. Mathematical analysis, 

and where existing methods cannot be extended, new disciplines are defined: 

i. Mathematics in art, 

ii. Astronomy. 

Sometimes established disciplines, such as Projective Geometry, are abandoned. It would therefore 

follow that the mathematical subdisciplines, at least some of them, do not represent permanent ways of 

thinking, although it is difficult to imagine how we could dispense with the study of Algebra or 

Geometry, for example. They are forms of investigation that have proven to be the most effective over 

time, although they are likely to be reviewed at any time (Vălcan, 2022). 

We can say from the perspective of cultural experience that mathematical subdisciplines have 

proven to be the most efficient way to acquire and organize mathematical knowledge. We can formulate 

from this experience the premise that those who will learn Mathematics in this framework will acquire 

their knowledge more efficiently, if they analyze the methods by which this knowledge was discovered 

and the structures according to which it was organized.  

Therefore, in order to be mastered and used, mathematical knowledge must be organized in the 

lesson, largely similar to the way they are organized, in Mathematical Science. They remain the essential 

determinant, even if we cannot say that they represent the ideal order of school learning. Other factors 

must be taken into account in school learning, how are the psychological ones, 

i. a degree of maturity of the student, 

ii. skills 

iii. his motivation, 

factors that act in the manner of conditioning, by reference to the determining character of the 

mathematical subdisciplines (Astolfi & Develey, 1989). 

http://dx.doi.org/
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The term school learning, in general, refers to the process of mnemonic acquisition, active 

assimilation of information, formation of intellectual operations, motor skills and attitudes. As you can 

see, we define the school learning process through its product: 

i. information, 

ii. intellectual operations, 

iii. motor skills, 

iv. attitudes, 

so depending on what is learned, the content – see (Ausubel, 1968). There is, however, a relative 

autonomy of the learning process from the product, which results in the existence of legitimacy common 

to the process as a whole. A study of facts and principles has emerged from the study of learning 

processes, which remain valid in a wide variety of situations. These make up the theory of learning (or 

epistemology) whose data and conclusions are taken from and incorporated into Didactics, in particular, 

in Didactics of Mathematics.  

It would be wrong to equate learning with memorization. As some experts note, learning 

Mathematics is not limited to simply "storing" the information transmitted by the teacher, storing this 

information in the "memory - storage" of the student or updating it when checking the data purchased. 

Not infrequently, in school practice, there is such an equivalence between learning Mathematics and 

various memory functions (recognition, preservation or reproduction of mathematical knowledge). The 

acquisition of mathematical knowledge, the formation of skills to solve exercises and problems, are not 

just memory tasks; attention intervenes here - as a first condition of learning - then perception (in the 

form of observation) and thinking - with its operations of analysis, synthesis and generalization - followed 

by fixation in memory – see (Vălcan, 1997).  

1. Problem Statement 

Starting from those presented in the previous paragraph, but within a more general context, that of 

training and developing the competencies of pupils and students and teachers of solving Mathematics 

problems, we propose in this paper the construction of new body structures. rational numbers, isomorphic 

to each other, but also isomorphic to the field (Q,+,⋅). 

But, as it is known, and as I mentioned above, often solving a problem / exercise in a certain 

algebraic structure is quite difficult. That is why it is sometimes necessary to transfer the respective 

problem / exercise to an isomorphic structure with the given one and where it can be solved / studied 

more easily. But the problem of determining isomorphic algebraic structures at once is quite difficult for 

both pupils and students and teachers.  

In this paper we propose to build other structures of isomorphic (commutative) field with the field 

of rational numbers Q, on different subsets of the set Q, structures different from those known / presented 

so far. To begin with, we will see that if a and b are any two rational numbers, then on the set of rational 

numbers at most equal to a, so on the set of Q-∞,a, and on the set of rational numbers at least equal to b, so 

on the set Qb,+∞, we will be able to define such a structure. Moreover, all new structures of fields defined 

here will be isomorphic to each other. It will result, then, that there is a double infinity of structures of 

(commutative) fields of rational numbers, all isomorphic to each other, but also to the field (Q,+,⋅). 

http://dx.doi.org/


https://doi.org/10.15405/epes.23056.8 
Corresponding Author: Teodor-Dumitru Vălcan 
Selection and peer-review under responsibility of the Organizing Committee of the conference  
eISSN: 2672-815X 
 

 84 

Of course, we will use the ideas from the other papers that focused on similar aspects: first of all, 

the paper (Vălcan, 2017), which was the basis for the elaboration of other similar papers. We refer here to 

the work (Vălcan, 2018), where we showed that there is an isomorphic field of functions with the field of 

real numbers (R,+,⋅), then the papers (Vălcan, 2020) and (Vălcan, 2021), where we showed that there are 

a series of rings of integer numbers, isomorphic between them, but also isomorphic with the ring of 

integer numbers (Z,+,⋅). 

2. Research Questions 

In our research we will try to find answers to the following questions: 

i. There are others structures of field defined on sets of rational numbers, apart from the known 

ones, and which are isomorphic to the field of rationals, (Q,+,⋅)? 

ii. How can these structures be identified? 

2.1. Regarding the first question 

We are thinking here of sets of rational numbers, unbounded inferior, but bordered superiorly, or 

vice versa. 

2.2. Regarding the second question 

We refer here to the ways of determining both these structures and the isomorphisms between 

them. 

3. Purpose of the Study 

Therefore, we answered the two questions in Paragraph 3. Thus, for any numbers a, b∈Q there are 

two pairs of laws of internal composition on the sets Q-∞,a and Qb,+∞, let's say „♣” and „♦”, respectively 

„♥” and „♠”, so that (Q-∞,a,♣,♦) and (Qb,+∞,♥,♠,) become commutative fields isomorphic to the field 

(Q,+,⋅).   

Concretely, on the set of rationals at most equal to 3, which we denote with Q-∞,3 and on the set of 

integers at least equal to 5, which we denote with Q5,+∞, we can define two pairs of laws of internal 

composition so that let's say „♣” and „♦”, respectively „♥” and „♠”, so that (Q-∞,3,♣,♦) and (Q5,+∞,♥,♠) 

become commutative rings isomorphic to the field (Q,+,⋅).  

4. Research Methods 

Let be a, b∈Q. We note with: 

Q-∞,a={x∈Q | x<a}   and  Qb,+∞={x∈Q | x>b}. 

Then the functions: 

fa : Q → Q-∞,a   and   gb : Q → Qb,+∞, 
defined by: 

http://dx.doi.org/
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fa(x)=













+∞∈−−
∈−+

∞∈+

)[0, xif ,2xa
(−1,0) xif ,1xa

,−1](− xif ,    
x
1a

  and  gb(x)=













+∞∈++
∈+−

∞∈−

)[0, xif ,2xb
(−1,0) xif ,1xb

,−1](− xif ,    
x
1b

 

are bijections, and their inverses are functions:  

f 1
a
−  : Q-∞,a → Q   and   g 1

b
−  : Qb,+∞ → Q, 

defined by:  

f 1
a
− (x)=













∈
−

∈+−
∞∈−−

a)1,−[a xif ,    
ax

1
1)−a2,−(a xif ,1ax

2]−a,(− xif ,2xa
 and   g 1

b
− (x)=













+∞+∈−−
++∈+−

+∈
−

)2,b[ xif ,2bx
2)b1,(b xif ,1xb

1]b,b( xif ,    
xb

1

, 

which, according to Vălcan, (2019) shows that: 

Q ∼ Q-∞,a    and   Q ∼ Qb,+∞, 

whence it follows that: 

Q-∞,a ∼ Qb,+∞; 

the bijection that accomplishes this is: 

ha,b=gb◦f 1
a
−  : Q-∞,a → Qb,+∞;  

where, for every x∈Q-∞,a,  

ha,b(x)=(gb◦f 1
a
− )(x)=gb(f 1

a
− (x))=















+∞∈++

∈+−

∞∈−

−−

−−

−
−

)[0,)x(f if ,2)x(fb

(−1,0))x(f if ,1)x(fb

,−1](−)x(f if ,     
)x(f

1b

1
a

1
a

1
a

1
a

1
a1

a

 

         =








−−∞∈+−−+
∈+−+−
∈+−

]2a,(x if ,22xab
1)−a2,−(ax if ,  11axb

a)1,−a[x if ,            axb
=a+b-x=b+(a-x), 

and  

h 1
b,a

−  : fa◦g 1
b
−  : Qb,+∞ → Q-∞,a;  where, for every x∈Q-∞,a,  h 1

b,a
− (x)=a-(x-b). 

It follows that the following diagram (A) in Figure 1, is commutative: 

 

Q            fa                  Q-∞,a 

      gb 

                      ha,b=gb◦f 1
a
− . 

Qb,+∞ 

 Diagram (A) Figure 1. 

 

The first fundamental result of this paragraph is: 

http://dx.doi.org/
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Theorem 5.1: For every number a∈Q, there are two laws of internal composition, let's say „♣” and 

„♦”, on the set Q-∞,a, such that (Q-∞,a,♣,♦) to become is a (commutative) field isomorphic to the field 

(Q,+,⋅). 

Proof: We transfer the field structure from Q to Q-∞,a, using the functions:  

fa : Q → Q-∞,a,        where, for every x∈Q,  fa(x)= 













+∞∈−−
∈−+

∞∈+

)[0, xif ,2xa
(−1,0) xif ,1xa

,−1](− xif ,    
x
1a

 

and     

f 1
a
−  : Q-∞,a → Q,  is defined by:  f 1

a
− (x)= 













∈
−

∈+−
∞∈−−

a)1,−[a xif ,    
ax

1
1)−a2,−(a xif ,1ax

2]−a,(− xif ,2xa
. 

So, according to Vălcan (2017), we obtain the two laws of composition „♣” and „♦” on the set of 

integers Q-∞,a. Let be x, y∈Q-∞,a. For defining the law „♣”, we distinguish the following cases: 

Case 1: x, y∈(-∞,a-2]. Then: 

x♣y=fa(f 1
a
− (x)+f 1

a
− (y))=fa((a-x-2)+(a-y-2))=fa(2⋅a-x-y-4)=a-(2⋅a-x-y-4)-2 

       =a-(a-x)-(a-y)+2. 

Case 2: x∈(-∞,a-2] and y∈(a-2,a-1). Then: 

x♣y=fa(f 1
a
− (x)+f 1

a
− (y))=fa((a-x-2)+(y-a+1))=fa(-x+y-1) 

      =




+≥−−+−−
+<−−−−+
1xy if ,1)ya()xa(a
1xy if ,2)ya()xa(a

. 

Case 3: x∈(-∞,a-2] and y∈[a-1,a). Then: 

x♣y=fa(f 1
a
− (x)+f 1

a
− (y))=fa 








−

−−−
ya

1)2xa(  

      =
















≥⋅
−

+−−





<⋅
>⋅

+

−≤⋅
−−⋅−−

−
+

1y)−(a2]−x)−[(a if ,               
ya

1)xa(a

1y)−(a2]−x)−[(a
1y)−(a1]−x)−[(a

 if ,              3−
y−a

1−x)−(aa

1y)−(a1]−x)−[(a if , 
1)ya(]2)xa[(

yaa

. 

Case 4: x, y∈(a-2,a-1). Then: 

x♣y=fa(f 1
a
− (x)+f 1

a
− (y))=fa((x-a+1)+(y-a+1))=fa(x+y-2⋅a+2) 

      =







<+<+−

<+≤
−−+−

−

3y)−(ax)−(a2 if ,      1y)−(a−x)−(aa

4y)−(ax)−(a3 if ,
2)ya()xa(

1a
. 

Case 5: x∈(a-2,a-1) and y∈[a-1,a). Then: 

http://dx.doi.org/
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x♣y=fa(f 1
a
− (x)+f 1

a
− (y))=fa 








−

−+−
ya

1)1ax( =a+(a-x)+
ya

1
−

-3. 

Case 6: x, y∈[a-1,a). Then: 

x♣y=fa(f 1
a
− (x)+f 1

a
− (y))=fa 








−

−
−

−
ya

1
xa

1 =a-
)ya()xa(
)ya()xa(

−+−
−⋅−

. 

Therefore, for every x, y∈Q-∞,a,  

x♣y=a-(a-x)-(a-y)+2, if x, y∈(-∞,a-2]; 

x♣y=




+≥−−+−−
+<−−−−+
1xy if ,1)ya()xa(a
1xy if ,2)ya()xa(a

 and x∈(-∞,a-2], y∈(a-2,a-1); 

x♣y=
















≥⋅
−

+−−





<⋅
>⋅

+

≤⋅
−−⋅−−

−
+

1y)−(a2]−x)−[(a if ,              
ya

1)xa(a

1y)−(a2]−x)−[(a
1y)−(a1]−x)−[(a

 if ,           
y−a

1−3]−x)−(a[a

1y)−(a1]−x)−[(a if ,
1)ya(]2)xa[(

yaa

 and x∈(-∞,a-2], y∈[a-1,a); 

x♣y=







<+<+−

<+≤
−−+−

−

3y)−(ax)−(a2 if ,      1y)−(a−x)−(aa

4y)−(ax)−(a3 if ,
2)ya()xa(

1a
 and x, y∈(a-2,a-1); 

x♣y=a+(a-x)+
ya

1
−

-3, if x∈(a-2,a-1) and y∈[a-1,a); 

x♣y=a-
)ya()xa(
)ya()xa(

−+−
−⋅−

 and x, y∈[a-1,a). 

Now, for defining the law „♦”, we distinguish the following cases: 

Case 1: x, y∈(-∞,a-2]. Then: 

x♦y=fa(f 1
a
− (x)⋅f 1

a
− (y))=fa((a-x-2)⋅(a-y-2))=a-(a-x-2)⋅(a-y-2)-2 

      =a-(a-x)⋅(a-y)+2⋅[(a-x)+(a-y)]-6. 

Case 2: x∈(-∞,a-2] and y∈(a-2,a-1). Then: 

 if x=a-2, then:  

x♦y=fa(f 1
a
− (x)⋅f 1

a
− (y))=fa(0⋅(y-a+1))=fa(0)=a-2, 

 if x<a-2, then: 

x♦y=







≥−−⋅−−
−−⋅−−

−

<−−⋅−−−+−⋅−−+

1]1)ya[(]2)xa([ if ,     
)1ya()2xa(

1a

1]1)ya[(]2)xa([ if ,1)1ay()2xa(a
 

       =







≥−−⋅−−
−−⋅−−

−

<−−⋅−−−−⋅+−+−⋅−−

1]1)ya[(]2)xa([ if ,                      
]1)ya[(]2)xa[(

1a

1]1)ya[(]2)xa([ if ,3)ya(2)xa()ya()xa(a
 

Case 3: x∈(-∞,a-2] and y∈[a-1,a). Then: 

 if x=a-2, then:  

http://dx.doi.org/
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x♦y=fa(f 1
a
− (x)⋅f 1

a
− (y))=fa 








−
−

⋅
ya

10 =fa(0)=a-2, 

 if x<a-2, then: 

x♦y=fa(f 1
a
− (x)⋅f 1

a
− (y))=fa 








−
−

⋅−−
ya

1)2xa( =










+≥

+<−
−
−−

−

2xy if ,         
2−x)−(a

y)−(a−a

2xy if ,1
ya

2)xa(a
. 

Case 4: x, y∈(a-2,a-1). Then: 

x♦y=fa(f 1
a
− (x)⋅f 1

a
− (y))=fa((x-a+1)⋅(y-a+1))=a+(x-a+1)⋅(y-a+1)-1 

      =a+[(a-x)-1]⋅[(a-y)-1]-1=a+(a-x)⋅(a-y)-(a-x)-(a-y). 

Case 5: x∈(a-2,a-1) and y∈[a-1,a). Then: 

x♦y=fa(f 1
a
− (x)⋅f 1

a
− (y))=fa 








−
−

⋅+−
ya

1)1ax( =fa 







−

−−
ya

1)xa( =a-
ya

1)xa(
−

−−
-2. 

Case 6: x, y∈[a-1,a). Then: 

x♦y=fa(f 1
a
− (x)⋅f 1

a
− (y))=fa 








−

⋅
− ya

1
xa

1 =a-
)ya()xa(

1
−⋅−

-2. 

Therefore, for every x, y∈Q-∞,a,  

x♦y=a-(a-x)⋅(a-y)+2⋅[(a-x)+(a-y)]-6, if x, y∈(-∞,a-2];  

 if x=a-2 and y∈(a-2,a-1), then:  

x♦y=(a-2)♦y=a-2; 

 x∈(-∞,a-2) and y∈(a-2,a-1), then: 

x♦y=







≥−−⋅−−
−−⋅−−

−

<−−⋅−−−−⋅+−+−⋅−−

1]1)ya[(]2)xa([ if ,                      
]1)ya[(]2)xa[(

1a

1]1)ya[(]2)xa([ if ,3)ya(2)xa()ya()xa(a
; 

 if x=a-2 and y∈[a-1,a), then:  

x♦y=(a-2)♦y=a-2; 

 if x∈(-∞,a-2) and y∈[a-1,a), then: 

x♦y=










+≥

+<−
−
−−

−

2xy if ,        
2−x)−(a

y)−(a−a

2xy if ,1
ya

2)xa(a
; 

x♦y=a+(a-x)⋅(a-y)-(a-x)-(a-y), if x, y∈(a-2,a-1); 

x♦y=a-
ya

1)xa(
−

−−
-2, if x∈(a-2,a-1) and y∈[a-1,a); 

x♦y=a-
)ya()xa(

1
−⋅−

-2, if x, y∈[a-1,a). 

On the other hand, 

e
a,Q ∞−

=fa(eQ)=fa(0)=a-2  

http://dx.doi.org/
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and   

-x
a,Q ∞−

=fa(-f 1
a
− (x))=

















∈

∈
=−
∈+

∞∈

a)1,−[a xif ,   2−
x−a

1−a

1)−a2,−(a xif ,              1−x
2−a xif ,             2a

2)−a3,−(a xif ,             1x

3]−a,(− xif ,
2−x)−(a

1−a

, 

and: 

1
a,Q ∞−

=fa(1Q)=a-3    

and, for every x∈Q-∞,a\{a-2},    

x 1
Q a,

−
∞−

=fa 









− )x(f
1
1

a

=















∈
=

∈
−−

−

∞∈−
−−

−

a)1,−(a xif ,                       1−x
1−a xif ,                       1−a

1)−a2,−(a xif ,       
1)xa(

1a

2)−a,(− xif ,2
2)xa(

1a

. 

Therefore, according to Vălcan (2017), (Q-∞,a,♣,♦) is a (commutative) field isomorphic to the 

field of rational numbers, (Q,+,⋅). 

Now let's show that, indeed, the function: 

fa : Q → Q-∞,a,         defined by: fa(x)=













+∞∈−−
∈−+

∞∈+

)[0, xif ,2xa
(−1,0) xif ,1xa

,−1](− xif ,    
x
1a

, 

is an isomorphism between the two fields. For this, we first notice that, for every x, y∈Q, 

fa(x+y)=














+∞∈+−−−
∈+−++

∞∈+
+

+

)[0,y xif ,2yxa
(−1,0)y xif ,1yxa

,−1](−y xif ,    
yx

1a

 and  fa(x⋅y)=














+∞∈⋅−⋅−
∈⋅−⋅+

∞∈⋅
⋅

+

)[0,y xif ,2yxa
(−1,0)y xif ,1yxa

,−1](−y xif ,     
yx

1a

. 

To determine the expressions fa(x)♣fa(y), respectively fa(x)♦fa(y), we distinguish the following 

cases: 

Case 1: x, y∈(-∞,-1]. Then: 

fa(x)=a+
x
1
∈[a-1,a)   and  fa(y)=a+

y
1
∈[a-1,a). 

It follows that: 

fa(x)♣fa(y)=a+
yx

1
+

  and  fa(x)♦fa(y)=a-x⋅y-2. 

Case 2: x∈(-∞,-1] and y∈(-1,0). Then: 

http://dx.doi.org/
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fa(x)=a+
x
1
∈[a-1,a)   and  fa(y)=a+y-1∈(a-2,a-1). 

It follows that: 

fa(x)♣fa(y)=a-x-y-2   and  fa(x)♦fa(y)=a-x⋅y-2. 

Case 3: x∈(-∞,-1] and y∈[0,+∞). Then: 

fa(x)=a+
x
1
∈[a-1,a)   and  fa(y)=a-y-2∈(-∞,a-2]. 

It follows that: 

fa(x)♣fa(y)=














≥+−−−
∈+++

≥
+

+
+

0y xif ,2yxa
(−1,0)y xif ,  1−yxa

1
x

1y if ,     
yx

1a

=




≥+−−−
∈+++

0y xif ,2yxa
(−1,0)y xif ,  1−yxa

, 

because the first option is not possible, and  

fa(x)♦fa(y)=










≥
+⋅

⋅
+

<
+⋅

⋅+

0
x

1yx xif ,    
yx

1a

0
x

1yx if , 1-yxa
=







≤⋅
⋅

+

−>⋅⋅+

−1y xif ,    
yx

1a

1y xif , 1−yxa
. 

Case 4: x, y∈(-1,0). Then: 

fa(x)=a+x-1∈(a-2,a-1)  and  fa(y)=a+y-1∈(a-2,a-1). 

It follows that: 

fa(x)♣fa(y)=







∈+++

≤+≤
+

+

(-1,0)y xif , 1-yxa

-1yx2- if ,    
yx

1a
  and fa(x)♦fa(y)=a+x⋅y-1. 

Case 5: x∈(-1,0) and y∈[0,+∞). Then: 

fa(x)=a+x-1∈(a-2,a-1)  and  fa(y)=a-y-2∈(-∞,a-2]. 

It follows that: 

fa(x)♣fa(y)=




>+++
<+−++

0y xif , 2−yxa
0y xif , 1yxa

 and fa(x)♦fa(y)=








−≤⋅
⋅

+

−>⋅−⋅+

1yx if ,     
yx

1a

1yx if ,1yxa
.  

Case 6: x, y∈[0,+∞). Then: 

fa(x)=a-x-2∈(-∞,a-2]  and  fa(y)=a-y-2∈(-∞,a-2]. 

It follows that: 

fa(x)♣fa(y)=a-x-y-2   and  fa(x)♦fa(y)=a-x⋅y-2. 

It follows that for every x, y∈Q: 

fa(x+y)=fa(x)♣fa(y)   and  fa(x⋅y)=fa(x)♦fa(y). 

Therefore, according to Vălcan (2017), (Q-∞,a,♣,♦) is a (commutative) field isomorphic to the field 

of rational nambers, (Q,+,⋅). 

Remark 5.2: For a=0, from Theorem 5.1, obtain the field structure on the set Q-∞,0, of negative rational 

numbers, transferred from the filed (Q,+,⋅) by function: 

http://dx.doi.org/
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f0 : Q → Q-∞,0,  defined by:  f0(x)=













+∞∈−−
∈−

∞∈

)[0, xif ,2x
(−1,0) xif ,    1x

,−1](− xif ,        
x
1

 

and for which the inverse is:   

f 1
0
−  : Q-∞,0 → Q,  defined by:  f 1

0
− (x)=













∈

∈+
∞∈−−

[−1,0) xif ,        
x
1

(−2,−1) xif ,    1x
,−2](− xif ,2x

. 

The second fundamental result of this paper is:  

Theorem 5.3: For every b∈Q, there are two laws of internal composition, let's say „♥” and „♠”, on the 

set Qb,+∞, such that (Qb,+∞,♥,♠) to become is a (commutative) field isomorphic to the field (Q,+,⋅). 

Proof: We transfer the ring structure from Q to Qb,+∞, using the bijection function:  

gb : Q → Qb,+∞,   where,    gb(x)=













+∞∈++
∈+−

∞∈−

)[0, xif ,2xb
(−1,0) xif ,1xb

,−1](− xif ,    
x
1b

, 

and     

g 1
b
−  : Qb,+∞ → Q,  is defined by:  g 1

b
− (x)=













+∞+∈−−
++∈+−

+∈
−

)2,b[ xif ,2bx
2)b1,(b xif ,1xb

1]b,b( xif ,    
xb

1

. 

Hence, according to Vălcan (2017), obtain the two composition laws „♥” and „♠” on Qb,+∞. Let be 

x, y∈Qb,+∞. For defining the law „♥”, we distinguish the following cases: 

Case 1: x, y∈(b,b+1]. Then: 

x♥y=gb(g 1
b
− (x)+g 1

b
− (y))=gb 








−

−
−

−
by

1
bx

1 =b+
)by()bx(
)by()bx(

−+−
−⋅−

. 

Case 2: x∈(b,b+1] and y∈(b+1,b+2). Then: 

x♥y=gb(g 1
b
− (x)+g 1

b
− (y))=gb 






 +−+

−
− 1yb

bx
1  

      =
[ ] [ ]

[ ]
[ ]














−<−−⋅−
−>−⋅

−+
−

+

−≥−⋅
+−−−

−
+

12)by()bx(
11b)−(yb)−(x

 if ,            )by(
bx

1b

12b)−(yb)−(x if ,
11)by()bx(

bxb

. 

Case 3: x∈(b,b+1] și y∈[b+2,+∞). Then: 

x♥y=gb(g 1
b
− (x)+g 1

b
− (y))=gb 






 −−+

−
− 2by

bx
1
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      =
















≤−⋅+
−

−





<−⋅
>−⋅

+−−

≥+⋅
−−⋅−−

−
+

12]b)−[(yb)−(x if ,                  b)−(y
bx

1b

1]1b)−[(yb)−(x
12]b)−[(yb)−(x

 if ,             3b)−(y
x−b

1b

11]b)−[(yb)−(x if , 
]2)by[()bx(1

bxb

. 

Case 4: x, y∈(b+1,b+2). Then: 

x♥y=ga(g 1
b
− (x)+g 1

b
− (y))=gb((b-x+1)+(b-y+1)) 

      =








<+<
−−+−

+

<+≤−−+−+

3b)−(yb)−(x2 if , 
2)by()bx(

1b

4b)−(yb)−(x3 if ,   1)by()bx(b
. 

Case 5: x∈(b+1,b+2) and y∈[b+2,+∞). Then: 

x♥y=gb(g 1
b
− (x)+g 1

b
− (y))=gb(b-x+1+y-b-2)=gb[-(x-b)+(y-b)-1] 

      =








+≥+−+−−




+<
>

+−−−+

1xy if , 1)by()bx(b
1xy

xy
 if ,2)by()bx(b

. 

Case 6: x, y∈[b+2,+∞). Then: 

x♥y=gb(g 1
b
− (x)+g 1

b
− (y))=gb[(x-b)-2+(y-b)-2]=b+(x-b)+(y-b)-2. 

Therefore, for every x, y∈Qb,+∞, 

x♥y=b+
)by()bx(
)by()bx(

−+−
−⋅−

, if x, y∈(b,b+1]; 

x♥y=
[ ] [ ]

[ ]
[ ]














−<−−⋅−
−>−⋅

−+
−

+

−≥−⋅
+−−−

−
+

12)by()bx(
11b)−(yb)−(x

 if ,            )by(
bx

1b

12b)−(yb)−(x if ,
11)by()bx(

bxb

, if x∈(b,b+1] and y∈(b+1,b+2); 

x♥y=
















≤−⋅+
−

−





<−⋅
>−⋅

+−−

≥+⋅
−−⋅−−

−
+

12]b)−[(yb)−(x if ,                  b)−(y
bx

1b

1]1b)−[(yb)−(x
12]b)−[(yb)−(x

 if ,             3b)−(y
x−b

1b

11]b)−[(yb)−(x if ,  
]2)by[()bx(1

bxb

 and x∈(b,b+1] and y∈[b+2,+∞); 

x♥y=







<+<
−−+−

+

<+≤−−+−+

3b)−(yb)−(x2 if , 
2)by()bx(

1b

4b)−(yb)−(x3 if ,   1)by()bx(b
 and x, y∈(b+1,b+2); 

x♥y=








+≥+−+−−




+<
>

+−−−+

1xy dacă , 1)by()bx(b
1xy

xy
 dacă ,2)by()bx(b

, if x∈(b+1,b+2) and y∈[b+2,+∞); 

x♥y=b+(x-b)+(y-b)-2, if x, y∈[b+2,+∞). 

Now, defining the law „♠”, we distinguish the following cases: 

http://dx.doi.org/
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Case 1: x, y∈(b,b+1]. Then: 

x♠y=gb(g 1
b
− (x)⋅g 1

b
− (y))=gb 








−

⋅
− by

1
bx

1 =b+
)by()bx(

1
−⋅−

+2. 

Case 2: x∈(b,b+1] și y∈(b+1,b+2). Then: 

x♠y=gb(g 1
b
− (x)⋅g 1

b
− (y))=gb 






 +−⋅

−
− )1yb(

bx
1 =b+

bx
1)by(

−
−− +2. 

Case 3: x∈(b,b+1] și y∈[b+2,+∞). Then: 

x♠y=gb(g 1
b
− (x)⋅g 1

b
− (y))=gb 






 −−⋅

−
− )2by(

bx
1 =










+<++

+≥
−−

−
+

2xy if ,1
b−x

2−b)−(yb

2xy if ,   
2)by(

bxb
. 

Case 4: x, y∈(b+1,b+2). Then: 

x♠y=ga(g
1

b
− (x)⋅g 1

b
− (y))=gb((b-x+1)⋅(b-y+1))=gb((1+(b-x))⋅(1+(b-y)) 

       =b+(b-x)⋅(b-y)+(b-x)+(b-y)+3. 

Case 5: x∈(b+1,b+2) și y∈[b+2,+∞). Then: 

x♠y=gb(g
1

b
− (x)⋅g 1

b
− (y))=gb((b-x+1)⋅(y-b-2))=gb([1-(x-b)]⋅[(y-b)-2]) 

       = [ ] [ ] [ ] [ ]

[ ] [ ]






<−−⋅−−<+−−−⋅−−⋅−+

≥−−⋅−−
−−⋅−−

+

12)by(1)bx(0 if ,3)by()bx(2)by()bx(b

12)by(1)bx( if ,                       
2)2y(1)bx(

1b
. 

Case 6: x, y∈[b+2,+∞). Then: 

x♠y=gb(g
1

b
− (x)⋅g 1

b
− (y))=gb([(x-b)-2)]⋅[(y-b)-2])=b+(x-b)⋅(y-b)-2⋅(x-b)-2⋅(y-b)+6. 

Therefore, for every x, y∈Qb,+∞,  

x♠y=b+
)by()bx(

1
−⋅−

+2, if x, y∈(b,b+1]; 

x♠y=b+
bx

1)by(
−

−− +2, if x∈(b,b+1] and y∈(b+1,b+2); 

x♠y=










+<++

+≥
−−

−
+

2xy if , 1
b−x

2−b)−(yb

2xy if ,    
2)by(

bxb
 and x∈(b,b+1] and y∈[b+2,+∞); 

x♠y=b+(b-x)⋅(b-y)+(b-x)+(b-y)+3, if x, y∈(b+1,b+2); 

x♠y= [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]






∈−−⋅−−−−⋅−−+

≥−−⋅−−
−−⋅−−

+

)1,0(2)by(1)bx( if , 2)by(1)bx(b

12)by(1)bx( if ,
2)2y(1)bx(

1b
, if x∈(b+1,b+2) and 

y∈[b+2,+∞); 

x♠y=b+(x-b)⋅(y-b)-2⋅(x-b)-2⋅(y-b)+6, if x, y∈[b+2,+∞). 

On the other hand, 

e
+∞,bQ =gb(eQ)=gb(0)=b+2  

http://dx.doi.org/
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and   

-x
+∞,bQ =gb(-g 1

b
− (x))=

















+≥
−−

−

++∈
+=+

++∈+

+∈++

3b xif , 
)bx(2

1b

3)b2,(b xif ,                  1−x
 2b xif ,                 2b

2)b1,(b xif ,                 1x

1]b(b, xif ,     2
b−x

1b

, 

and: 

1
+∞,bQ =gb(1Q)=b+3   

and    

x 1
Q ,b

−
+∞

=gb 









− )x(g
1
1

b
=















+∞+∈++

++∈++

+=+
+∈+

)2,(b xif ,2
2-b)-(x

1b

)2b,1b( xif , 1
1-b)-(x

1b

1b xif ,                   1b
1)b(b, xif ,                   1x

. 

Therefore, according to Vălcan (2017), (Qb,+∞,♥,♠) is a (commutative) field isomorphic to the 

field (Q,+,⋅).  

Now let's show that, indeed, the function:  

gb : Q → Qb,+∞,  defined by:   gb(x)=













+∞∈++
∈+−

∞∈−

)[0, xif ,2xb
(−1,0) xif ,1xb

,−1](− xif ,    
x
1b

 

is an isomorphism between the two fields. For every x, y∈Q, 

gb(x+y)=














+∞∈++++
∈++−−

∞∈+
+

−

)[0,y xif ,2yxb
(−1,0)y xif , 1yxb

,−1](−y xif ,      
yx

1b

 and  gb(x⋅y)=














+∞∈⋅+⋅+
∈⋅+⋅−

∞∈⋅
⋅

−

)[0,y xif ,2yxb
(−1,0)y xif ,1yxb

,−1](−y xif ,     
yx

1b

. 

Now, to determine the expressions gb(x)♥gb(y), respectively gb(x)♠gb(y), we distinguish the 

following cases: 

Case 1: x, y∈(-∞,-1]. Then: 

gb(x)=b-
x
1
∈(b,b+1]  and  gb(y)=b-

y
1
∈(b,b+1]. 

It follows that: 

gb(x)♥gb(y)=b+
yx

1
+

  and  gb(x)♠gb(y)=b+x⋅y+2. 

Case 2: x∈(-∞,-1] and y∈(-1,0). Then: 

http://dx.doi.org/
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gb(x)=b-
x
1
∈(b,b+1]  and  gb(y)=b-y+1∈(b+1,b+2). 

It follows that: 

gb(x)♥gb(y)=b-
yx

1
+

  and  gb(x)♠gb(y)=b+x⋅y+2. 

Case 3: x∈(-∞,-1] and y∈[0,+∞). Then: 

gb(x)=b-
x
1
∈(b,b+1]  and  gb(y)=b+y+2∈[b+2,+-∞). 

It follows that: 

gb(x)♥gb(y)=
















≤+++++




−<+
>+

+

≥++
+

−

01y xif ,2yxb
1zx

0yx
 if ,   1y−x−b

01y xif ,     
yx

1b

= 







≤+++++

≥++
+

−

01y xif ,2yxb

01y xif ,      
yx

1b
, 

because the second option is not possible, and 

gb(x)♠gb(y)=







<⋅+⋅−

≥⋅
⋅

−1y xif ,1yxb

−1y xif ,     
yx

1−b
. 

Case 4: x, y∈(-1,0). Then: 

gb(x)=b-x+1∈(b+1,b+2)  and  gb(y)=b-y+1∈(b+1,b+2). 

It follows that: 

gb(x)♥gb(y)=







∈+
+

−

≤+≤+−−

(−1,0)y xif ,     
yx

1b

−1yx2− if , 1yxb
  and gb(x)♠gb(y)=b+x⋅y+2. 

Case 5: x∈(-1,0) and y∈[0,+∞). Then: 

gb(x)=b-x+1∈(b+1,b+2)  and  gb(y)=b+y+2∈[b+2,+∞). 

It follows that: 

gb(x)♥gb(y)=




≥++++
∈++−−

0y xif , 2yxb
(−2,0)y xif , 1yxb

  and gb(x)♠gb(y)=







−∈⋅+⋅

−≤⋅
⋅

−

)0,1(y xif , 1yx−b

1y xif ,    
yx

1b
 . 

Case 6: x, y∈[0,+∞). Then: 

gb(x)=b+x+2∈[b+2,+-∞)  and  gb(y)=b+y+2∈[b+2,+-∞). 

It follows that: 

gb(x)♥gb(y)=b+x+y+2  and  gb(x)♠gb(y)=b+x⋅y+2. 

Hence, for every x, y∈Q,  

gb(x+y)=gb(x)♥gb(y)  and  gb(x⋅y)=gb(x)♠gb(y). 

Now, we can say that the theorem is completely proved. 

At the end of this paragraph, three further remarks are required: 

http://dx.doi.org/
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Remark 5.4: For b=0 we get the structure of commutative field on the set Q0,+∞, of positive 

rationals numbers, transferred from the field (Q,+,⋅) by function: 

g0 : Q → Q0,+∞,  defined by:  f0(x)=













+∞∈+
∈+−

∞∈−

)[0, xif ,   2x
(−1,0) xif ,1x

,−1](− xif ,    
x
1

,  

whose inverse is the function:  

g 1
0
−  : Q0,+∞ → Q,  defined by:  g 1

0
− (x)=













+∞+∈−
++∈+−

+∈−

)2,b[ xif ,  2x
2)b1,(b xif ,1x

1]b,b( xif ,    
x
1

. 

Remark 5.5: As demonstrated above, for any a, b∈Q, the fields (Q-∞,a,♣,♦) and (Qb,+∞,♥,♠) are 

commutative, and the diagram (A) is a commutative diagram of commutative fields.  

Remark 5.6: For every number a∈Q, there are two laws of internal composition, let's say „♣” and 

„♦”, on the set Q-∞,a, such that (Q-∞,a,♣,♦) to become is a commutative field isomorphic to the field 

(Q,+,⋅) and there are two laws of internal composition, let's say „♥” and „♠”, on the set Qa,+∞, such that 

(Qa,+∞,♥,♠) to become is a commutative field isomorphic to the field (Q,+,⋅) and so that the following 

diagram (B), in Figure 2, is a commutative diagram of commutative field: 

Q              fa                Q-∞,a 

      ga 

                        ha,a=ga◦f 1
a
− . 

Qa,+∞ 

 Diagram (B) Figure 2. 

 

In the diagram (B);  

Q-∞,a={x∈Q | x<a}   and  Qa,+∞={x∈Q | x>a}. 

and functions: 

fa : Q → Q-∞,a   and   ga : Q → Qa,+∞ 

defined by: 

fa(x)=













+∞∈−−
∈−+

∞∈+

)[0, xif ,2xa
(−1,0) xif ,1xa

,−1](− xif ,    
x
1a

 and  ga(x)= 













+∞∈++
∈+−

∞∈−

)[0, xif ,2xa
(−1,0) xif ,1xa

,−1](− xif ,    
x
1a

, 

are bijections (they are precisely isomorphisms of fields), whose inverses are:  

f 1
a
−  : Q-∞,a → Q   and   g 1

a
−  : Qa,+∞ → Q, 

defined by:  

http://dx.doi.org/
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f 1
a
− (x)= 













∈
−

∈+−
∞∈−−

a)1,−[a xif ,    
ax

1
1)−a2,−(a xif ,1ax

2]−a,(− xif ,2xa
          and g 1

a
− (x)= 













+∞+∈−−
++∈+−

+∈
−

)2,a[ xif ,2ax
2)a1,(a xif ,1xa

1]a,a( xif ,    
xa

1

. 

The function that achieves the isomorphism between the rings (Q-∞,a,♣,♦) and (Qa,+∞,♥,♠) is: 

ha,a=ga◦f
1

a
−  Q-∞,a :  → Qa,+∞;  

where, for every x∈Q-∞,a,  

ha,a(x)=ga◦f
1

a
− (x)=ga(f

1
a
− (x))=















+∞∈++

∈+−

∞∈−

−−

−−

−
−

)[0,)x(f if ,2)x(fa

(−1,0))x(f if ,1)x(fa

,−1](−)x(f if ,     
)x(f

1a

1
a

1
a

1
a

1
a

1
a1

a

 

         =








−−∞∈+−−+
∈+−+−
∈+−

]2a,(x if ,22xaa
1)−a2,−(ax if ,  11axa

a)1,−a[x if ,            axa
=2⋅a-x=a+(a-x), 

and  

h 1
a,a

− =fa◦g
1

a
−  : Qa,+∞ → Q-∞,a;   

where, for every x∈Q-∞,a,  

h 1
a,a

− (x)=fa(g
1

a
− (x))=a-(x-a).    

5. Findings 

Therefore, we answered the two questions in Paragraph 3. Thus, for any number a, b∈Q there are 

two pairs of laws of internal composition on the sets Q-∞,a and Qb,+∞, let's say „♣” and „♦”, respectively 

„♥” and „♠”, so that (Q-∞,a,♣,♦) and (Qb,+∞,♥,♠) become commutative fields isomorphic to the field 

(Q,+,⋅). 

Concretely, on the set of rationals smaller than 3, Q-∞,3, and on the set of rationals greater than 5, 

Q5,+∞, we can define two pairs of laws of internal composition so that let's say „♣” and „♦”, respectively 

„♥” and „♠”, so that (Q-∞,3,♣,♦) and (Q5,+∞,♥,♠) become commutative fields isomorphic to the field 

(Q,+,⋅). 

6. Conclusion 

As a general conclusion, we can say that any problem / exercise or equation in the set of rational 

numbers (Q,+,⋅) can be solved in either of these two sets (Q-∞,a,♣,♦), respectively (Qb,+∞,♥,♠); but also 

vice versa, i.e. any problem / exercise or equation in any of these two sets (Q-∞,a,♣,♦), respectively 

(Qb,+∞,♥,♠), we can solve it in the set of rational numbers (Q,+,⋅). Of course, after solving them in the 

new set, the solution is interpreted in the original set. 

http://dx.doi.org/
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Moreover, because these fields (Q-∞,a,♣,♦) and (Qb,+∞,♥,♠) are isomorphic to the field Q, but also 

isomorphic to each other, it follows that these new fields have their own subsets / rings of "integer" (Z-

∞,a,♣,♦) and (Zb,+∞,♥,♠)) and "natural" (N-∞,a,♣,♦) and (Nb,+∞,♥,♠) numbers respectively , isomorphic 

to each other, and isomorphic to the sets (Z,+,⋅) and (N,+,⋅) respectively. 

Of course, this paper is one of Didactics of Mathematics and is addressed to pupils, students or 

teachers attentive and interested in these issues, which we believe we have formed, in this way, a good 

image about these matters.  
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