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Abstract 
 

Differential evolution is known as a simple and well-argued evolutionary algorithm that demonstrates the 
high performance in many hard black-box optimization problems with continuous variables. The main 
feature of differential evolution is the difference-based mutation. The mutation explores the search space 
using the distribution of points in the population and usually can well adapt to the objective function 
landscape. There exist some modifications of differential evolution for the binary search space. The 
proposed approach involves the understanding of the binary space topology for developing a better 
analogue of the difference-based mutation. We have compared the proposed binary differential evolution 
algorithm with the standard binary genetic algorithm using a set of binary test problems, including hard 
deceptive problems. The preliminary experimental results shows that new binary differential evolution is a 
competitive search algorithm and outperforms the binary genetic algorithm in reliability for some problems 
but yields it in the required number of function evaluations. The proposed approach for developing mutation 
in DE can be expanded to all other mutation schemes for increasing the performance.    
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1. Introduction 

Differential evolution (DE) is known as a simple and well-argued evolutionary algorithm (EA) that 

demonstrates the high performance in many hard black-box optimization problems with continuous 

variables (Storn & Price, 1997). DE demonstrates the high performance even in its originally proposed 

form. Nevertheless, many modifications for different classes of optimization problems have been proposed. 

Many of DE-based approaches have become competition winners and are state-of-the-art (Molina et al., 

2018, Stanovov et al., 2021). Unlike many EAs, DE uses another evolutionary cycle. In the general EA 

cycle, selection is used for defining the fittest individuals for mating. Then crossover produces an offspring 

that contains a recombination of parents’ genes. Mutation is used as an additional operator for preventing 

the premature convergence and makes random and usually weak changes in genes of the offspring. The 

main feature of DE is the difference-based mutation. The operator plays the most important role in the 

search process and is applied before crossover and selection for generating a new random solution based 

on the distribution of the population in the search space. Such mutation usually can well adapt to the 

landscape of the objective function, identifies regularities and separable components, can walk along 

ravines. The benefits make DE attractive to work with other search spaces, and especially with the binary 

space.  

There exist some modifications of differential evolution for the binary search space. The standard 

approach uses DE with continuous variable in [0, 1], which are rounded to 0 or 1. The simple rounding can 

be substituted by the algorithm from the binary PSO, which defines 0 or 1 by evaluating the sigmoid 

function from the velocity of changes in genes (Pampara et al., 2006). The angle modulated DE (AMDE) 

makes use of angle modulation, a technique derived from the telecommunications industry, to implement 

a mapping between binary and continuous spaces (Engelbrecht & Pampara, 2007). Many approaches 

operate the binary space directly and design new mutation schemes for the representation (Chen et al., 2015; 

Deng et al., 2011; Peng et al., 2016). Some alternative approaches don’t design analogs of operators in 

continuous DE, but develop new operators while maintaining the general DE’s scheme (Banitalebi et al., 

2016; Wang et al., 2012). 

In this study, we propose a new approach that involves the understanding of the binary space 

topology for developing a better analogue of the continuous difference-based mutation. The proposed 

binary difference-based mutation involves such elements of the binary space as the Boolean hypercube, the 

neighbourhood of a binary vector, and the shortest path. The proposed binary differential evolution 

algorithm has been compared with the standard binary genetic algorithm using a set of binary test problems, 

including hard deceptive problems. The experimental results shows that new binary differential evolution 

is a competitive search algorithm and outperforms the binary genetic algorithm in reliability for some 

problems but yields it in the required number of function evaluations. At the same time, the results are 

preliminary, because the proposed approach for developing mutation in DE can be expanded to all other 

mutation schemes and state-of-the-art self-adaptive approaches for increasing the performance. 

The rest of the paper is organized as follows. Section 2 describes the problem statement and the 

proposed approach. Sections 3 presents experimental setups and the experimental results. In conclusion, 

the proposed methods and the obtained results are summarized, and some further research is suggested. 
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2. Problem Statement 

The standard DE algorithm solves the continuous global optimization problem (1), where the 

objective function is assumed to be a black-box model: 

 𝑓(𝒙) → min
𝒙∈ℝ!

, 𝑓: 𝒙 → ℝ, (1) 

here 𝒙 = (𝑥$, … , 𝑥%) and ∀𝑖: 𝑥& ∈ 𝑆 ⊆ ℝ%, usually 𝑙𝑏& ≤ 𝑥& ≤ 𝑟𝑏& with left (𝑙𝑏) and right (𝑟𝑏) bounds. 

Many real-world optimization problems use binary decision variables, but the quality of a solution 

is still estimated using a real value. Binary variables can be also the result of encoding of mixed-type 

variables or the result of the discretization of continuous variables. In this case, we deal with pseudo-

Boolean optimization that uses the following formal problem statement is (2): 

 𝑓(𝒙) → min
𝒙∈{(,$}!

, 𝑓: 𝒙 → ℝ, (2) 

here 𝒙 = (𝑥$, 𝑥+, … , 𝑥%) is a Boolean vector of 𝑛 coordinates, 𝑛 ∈ ℕ,, 𝑓 is an objective function. There are 

no assumptions on the type and properties of the objective function, thus it is considered as a black-box 

model. 

3. Research Questions 

One of approaches for understanding and analysing the topology of the binary search space is the 

representation using an 𝑛-dimensional Boolean hypercube (Björklund et al., 2004; Boros & Hammer, 

2002). Let’s make some important definitions. 

Definition 1. Let 𝑑-?𝒙& , 𝒙.@ = ∑ B𝑥&/ − 𝑥./B%
/0$  is the Hamming distance between two binary 

vectors 𝒙& and 𝒙.. 

Definition 2. Let 𝑁$(𝒙&) = {𝒙: 𝑑-(𝒙, 𝒙&) = 1} is a set of 1-neighbour vectors. A set of k-neighbour 

vectors can be defined at the same manner: 𝑁/(𝒙&) = {𝒙: 𝑑-(𝒙, 𝒙&) = 𝑘}. 

All binary vectors are vertices of the Boolean hypercube. Each pair of 1-neighbour vectors defines 

an edge of the hypercube.  

Definition 3. Let a set 𝑝𝑎𝑡ℎ(𝒙(, 𝒙1) = {𝒙(, 𝒙$, … , 𝒙12$, 𝒙1} is a path from a vertex 𝒙( to a vertex 

𝒙1, then ∀𝒙& , 𝒙&,$ ∈ 𝑝𝑎𝑡ℎ(𝒙(, 𝒙1): 𝒙&,$ ∈ 𝑁$(𝒙&). The length of the path is equal to |𝑝𝑎𝑡ℎ(𝒙(, 𝒙1)| = 𝑚. 

Definition 4. If 𝑑-(𝒙(, 𝒙1) = 𝑘 and |𝑝𝑎𝑡ℎ(𝒙(, 𝒙1)| = 𝑘, when 𝑝𝑎𝑡ℎ3(𝒙(, 𝒙1) is the shorted path. 

Remark. If 𝑑-(𝒙(, 𝒙1) > 1, there are multiple shortest paths from 𝒙( to 𝒙1. 

Now let’s consider the general scheme of a DE algorithm (see Algorithm 1). It contains three main 

steps, namely the difference-based mutation, crossover, and selection. 

 

Algorithm 1. DE 

1 Set the population size 𝑁, the scaling factor 𝐹, and the crossover probability 𝐶𝑅. 

2 Initialize population of random solutions {𝒙$, 𝒙+, … , 𝒙4} and evaluate their fitness values. 

3 while the termination criteria are not met do 

4 for 𝑖 = 1,… ,𝑁 do 
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5 Generate a mutant vector 𝒗& using one of mutation schemes. 

6 Perform crossover of 𝒙𝒊 and 𝒗& and get a trial vector 𝒖&. 

7 Perform selection. If the trial vector 𝒖& is better than 𝒙𝒊, save 𝒖& in the population. 

8 for end 

9 while end 

 

The following notation for choosing specific DE’s operator is used: 𝐷𝐸/𝑀/𝐷/𝐶, where 𝑀 is a 

mutation strategy, 𝐷 is the number of difference vectors in the mutation scheme, 𝐶 is a type of crossover. 

Let’s discuss the most popular and simple DE: 𝐷𝐸/𝑟𝑎𝑛𝑑/1/𝑏𝑖𝑛, which uses mutation with random vectors, 

only one difference vector, and the binominal crossover operator. The DE algorithm was proposed for 

continuous optimization problems and the mutation scheme for 𝑟𝑎𝑛𝑑/1 is defined as (3): 

 𝒗𝒊 = 𝒙6$ + 𝐹 ⋅ (𝒙6+ − 𝒙67), (3) 

here 𝑟1, 𝑟2, and 𝑟3 are indexes of different random vectors from the population, i.e. 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖, 

and 𝐹 is the scale factor. The difference-based mutation produces a new point 𝒗𝒊 in the search space by 

moving from 𝒙6$ in the direction from 𝒙67 to 𝒙6+ at the distance defined by 𝐹 (if 𝐹 = 1, the distance is 

equal to the length of (𝒙6+ − 𝒙67)). Figure 1 demonstrates an example of such mutation. 

 

 

 The difference-based mutation operator in DE 

4. Purpose of the Study 

The purpose of the study is the development of a way for building a mutant vector in the binary 

search space that uses the conception similar to mutation in the continuous search space. 

First, we will define the direction from 𝒙67 to 𝒙6+ in the binary space. By analogy with the 

continuous search space, we must define the shortest path from 𝒙67 to 𝒙6+. This can be done using definition 

4. Because of several shortest paths in the binary space, we must choose one of them. We can do it at 

random because of the mutation conception. Second, we must evaluate a point along the chosen direction 

at the distance defined by the scaling factor 𝐹. Because of the discrete search space, the point on the path 

can be defined as a point that belongs to the neighbourhood 𝑁8(𝒙67) (definition 2), where 𝑙 ∈
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{0,1, … , 𝑑-(𝒙6+, 𝒙67)} is defined using 𝐹. It is obvious that 𝑁((𝒙67) = {𝒙67} and 𝑁9"(𝒙#$,𝒙#%)(𝒙67) = {𝒙6+}. 

We can define 𝑙 by rounding up the result of the following product (4): 

 𝑙 = ⌈𝐹 ⋅ 𝑑-(𝒙6+, 𝒙67)⌉, 𝐹 ∈ (0,1]. (4) 

Thereby, the (𝐹 ⋅ (𝒙6+ − 𝒙67)) component of the difference-based mutation can be defined as a 

random vector that belongs to the shortest path from 𝒙67 to 𝒙6+ and is located on the distance 𝑙 from 𝒙67 

(5): 

 𝒙9 ∈ 𝑁8(𝒙67) ∩ 𝑝𝑎𝑡ℎ<(𝒙6+, 𝒙67). (5) 

Finally, we need to make the movement from 𝒙6$ in the direction defined by 𝒙9. For the binary 

space the movement means that a mutant vector 𝒗𝒊 will be in 𝑁8(𝒙6$) and its 𝑙	components will differ in 

the same positions as components differ in 𝒙67 and 𝒙9. Such a way will save components, which stay 

unchanged in the shortest path, by analogy with the movement in the continuous space if the direction 

(𝒙6+ − 𝒙67) is parallel to some of coordinate axes. The whole algorithm for performing the 𝑟𝑎𝑛𝑑/1	 

mutation in the binary space can be defined using properties of the exclusive disjunction (XOR) operation 

(6): 

 𝒗𝒊 = 𝒙6$⊕ (𝒙9 ⊕𝒙67). (6) 

In the same manner, one can evaluate all the rest of mutation schemes. In this study, we will also 

test the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡/1 scheme (7)-(8), which is reported as one of the best non-adaptive mutation 

schemes (Mohamed et al., 2021) and 𝑟𝑎𝑛𝑑/2 as it produces better diversity in the population (9)-(10). 

 𝒗𝒊 = 𝒙& ⊕ ?𝒙9& ⊕𝒙&@⊕ ?𝒙9$ ⊕𝒙6+@, (7) 

 𝒙9& ∈ 𝑁8(𝒙&) ∩ 𝑝𝑎𝑡ℎ3(𝒙=>3?, 𝒙&), 𝒙9$ ∈ 𝑁8(𝒙6+) ∩ 𝑝𝑎𝑡ℎ<(𝒙6$, 𝒙6+), (8) 

here 𝒙& is a vector from the population that is used for building a trial vector, 𝒙=>3? is the best-found solution, 

𝑟1, 𝑟2 are indexes of different random vectors from the population, i.e. 𝑟1 ≠ 𝑟2 ≠ 𝑖. 

 𝒗𝒊 = 𝒙6$⊕ ?𝒙9& ⊕𝒙67@ ⊕ ?𝒙9$ ⊕𝒙6@@, (9) 

 𝒙9& ∈ 𝑁8(𝒙67) ∩ 𝑝𝑎𝑡ℎ3(𝒙67, 𝒙6+), 𝒙9$ ∈ 𝑁8(𝒙6@) ∩ 𝑝𝑎𝑡ℎ<(𝒙6@, 𝒙6A), (10) 

here 𝑟1, …, 𝑟5 are indexes of different random vectors from the population, i.e. 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠

𝑟5 ≠ 𝑖. 

We don’t need to make any changes in the crossover and selection operators because they don’t 

depend on the search space properties. 

5. Research Methods 

The proposed approach has been implemented using C++ in the multi-thread mode for parallel 

computations using multicore CPUs. We have chosen the following set of test problems: the 𝑂𝑛𝑒𝑀𝑎𝑥 

problem with 𝑛 = 100 for evaluating the general ability of convergence, 6 hard massively multimodal and 

deceptive functions [we use the original notation 𝑓$$, …, 𝑓$B as in (Yu & Suganthan, 2010)] with 𝑛 equal 

to 30, 30, 24, 30, 30, and 40. 
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Binary DE have been tested with various combinations of parameters 𝐹 and 𝐶𝑟 from the following 

sets: 𝐹 = {0.1, 0.25, 0.5,0.75,0.9} and 𝐶𝑟 = {0.1, 0.25, 0.5,0.75,0.9}. The performance of binary DE has 

been compared with the standard binary genetic algorithm (GA). Binary GA have been tested with various 

settings the following sets: the type of crossover = {one-point, two-point, uniform} and the probability of 

mutation = {1 3𝑛⁄ , 1 𝑛⁄ , 3 𝑛⁄ }. 

The budget of function evaluations (𝑚𝑎𝑥𝐹𝐸𝑠) and its distribution in generations are: 𝑚𝑎𝑥𝐹𝐸𝑠 =

20000, the population size (𝑝𝑜𝑝𝑆𝑖𝑧𝑒) is 100, and the number of generations (𝑚𝑎𝑥𝐺𝑒𝑛𝑠) is 200 for 

𝑂𝑛𝑒𝑀𝑎𝑥; 𝑚𝑎𝑥𝐹𝐸𝑠 = 50000 (as it is proposed by authors of the benchmark), and 𝑝𝑜𝑝𝑆𝑖𝑧𝑒/𝑚𝑎𝑥𝐺𝑒𝑛𝑠 =

{100/500, 250/200} for 𝑓$$, …, 𝑓$B. The number of independent runs for each combination of parameters 

for each test function is 100. The performance measures are the rate of successful runs (𝑆𝑅) when the global 

optimum was found (an estimation of the probability of finding the global solution) and the average number 

of 𝐹𝐸𝑠 before the global optimum was found (only for successful runs). 

6. Findings 

The experimental results for the best settings of each algorithm are presented in Table 1. An example 

of the typical convergence plot for 𝑓11 averaged over 100 runs is shown in Figure 2. 

Table 1.  The experimental results 

Problem 
GA DE/rand/1 DE/rand/2 DE/current-to-best/1 

𝑆𝑅 𝐹𝐸𝑠 𝑆𝑅 𝐹𝐸𝑠 𝑆𝑅 𝐹𝐸𝑠 𝑆𝑅 𝐹𝐸𝑠 
𝑂𝑛𝑒𝑀𝑎𝑥 100 2748 100 3905 100 8527 100 8498 
𝑓11 100 4735 100 12111 100 19709 100 19944 
𝑓12 100 4563 100 10103 100 20442 100 19685 
𝑓13 62.1 2780 98.9 15087 95.1 17212 97.9 18701 
𝑓14 100 11915 78.1 24276 81.1 35565 81.8 33698 
𝑓15 80.1 3284 96.95 26223 100 29284 99.1 29442 
𝑓16 100 9568 100 11109 100 23229 100 22944 

 

 

 The convergence plot for f11 in one run 

7. Conclusion 
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In the study, we have proposed a novel binary DE that uses the difference-based mutation in the 

binary search space by analogy how it operates in the continuous space. The mutation operator uses such 

definitions as the neighbourhood, the shortest path over the Boolean hypercube. The preliminary 

experimental results have shown that the proposed approach is able to solve hard global pseudo-Boolean 

optimization problems and for many of considered problems the success rate of finding the global optimum 

is 100%. At the same time, we can see that the approach is slower that GA, which uses random mutation. 

We assume that binary DE can find a more accurate solution for large-scale problem with the limited budget 

of FEs, because it monotonically converges instead of randomly generating new points. In this study, we 

have tested only three simple schemes of mutation. State-of-the-art DE algorithms use many additional 

mechanisms such as restarts, the control of the population size, the self-adaptive control of parameters 𝐹 

and 𝐶𝑟, and self-adaptive mutation. In out further work, we will investigate one of the best DE approach 

SHADE in the binary space and will extend the test problem set with known benchmarks. 
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