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Abstract 

 
The present study is devoted to methods for the numerical solution to the system of equations AXB=D. In 
the case certain conditions are met, the classical gradient neural network (GNN) dynamics obtains fast 
convergence. However, if those conditions are not satisfied, solution to the equation does not exist and 
therefore the error function E(t):=AV(t)B-D cannot be equal to zero, which increases the CPU time required 
for the calculation. In this paper, the solution to the matrix equation AXB = D is studied using the novel 
Gradient Neural Network (GGNN) model, termed as GGNN(A,B,D). The GGNN model is developed using 
a gradient of the error matrix used in the development of the GNN model. The proposed method uses a 
novel objective function that is guaranteed to converge to zero, thus reducing the execution time of the 
Simulink implementation. The GGNN-based dynamical systems for computing generalized inverses are 
also discussed. The conducted computational experiments have shown the applicability and advantage of 
the developed method.    
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1. Introduction 

In this study work, we deal with the real-time solutions of the general linear matrix equation (GLME) 

𝐴𝑋𝐵 = 𝐷 utilizing the gradient-established neural network (GNN) dynamical evolution, termed as 

GNN(A,B,D). Previously, GNN models were described and investigated in the works of Wang (1992, 

1993), Zhang et al. (2009), Wang (1997), Wei (2000), Wang and Li (1994), Ding and Chen (2005), Zhang 

and Chen (2008). Convergence investigation indicates that the output of GNN(A,B,D) is specified by the 

choice of the initial state and belongs to the set of theoretical solutions to AXB=D. Also, this work contains 

diverse applications of the GNN(A,B,D) design described in  Stanimirović et al. (2017, 2019, 2022) and 

improvements of proposed models for solving linear systems Ax=b described in Urquhart  (1968). Most 

applications examined the impact of activation functions on the convergence rate of GNN(A,B,D) 

theoretically and by means of simulation experiments. In the last section, we will test the novel gradient-

based GNN formula (GGNN), which includes a different error matrix than the GNN model. 

The implementation is defined on the set of real matrices and is based on making simulations of 

considered GNN-based models for solving matrix equations. The numerical experiments are tested in 

MATLAB Simulink. 

2. Problem Statement 

Recurrent neural networks (RNNs) form an essential class of methods for solving the matrix 

equations. RNNs are splitted into two categories: Gradient Neural Networks (GNN) and Zhang (or Zeroing) 

Neural Networks (ZNN). The GNN flow is explicit and efficient in solving time-invariant problems, which 

assumes constant coefficients matrices in underlying matrix equations. ZNN models are mostly implicit 

and efficient in solving time-varying problems (entries involved in coefficient matrices of the equations are 

functions of time 𝑡 ∈ R, 𝑡 > 0). 

General GNN neural dynamics are used to solve 𝐴𝑋𝐵 = 𝐷. The dynamical evolution is developed 

based on the residual 𝐸(𝑡):= 𝐴𝑉(𝑡)𝐵 − 𝐷, such that V(t) is an unknown state-variable matrix which 

converges to the required matrix X of the GLME 𝐴𝑋𝐵 = 𝐷. The goal function ε(𝑡) = 3|𝐷 − 𝐴𝑉(𝑡)𝐵|3
!
"/2, 

is the function of the Frobenius norm. The gradient matrix of the objective ε(𝑡)	is computed as 

#$%&(()*
#&

= +
"

#,|./01(2)3|,!
"

#&
= −A4(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4. 

By the GNN evolution, one derives the dynamics 

�̇�(𝑡) = 51(2)
52

= −γ;#$%1(2)*
#1

< = −γ𝐴4(𝐴𝑉(𝑡)𝐵 − 𝐷)𝐵4,  (1) 

in which �̇�(𝑡) is the time derivative and 	γ > 	0 is a positive gain parameter necessary for accelerating 

convergence. A faster convergence is achieved by increasing the value γ. We denote this model as 

GNN(A,B,D). As already mentioned, the considered matrix-valued residual which cancels out over time is 

𝐸(t) = 𝐷 − 𝐴𝑉(𝑡)𝐵, such that V(t) is the activation state variables matrix. The nonlinear GNN(A,B,D) 

design is defined by 
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d1(2)
d2

= �̇�(𝑡) = γ𝐴4ℱ(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4. 

The function array ℱ(C) includes any odd and monotonically-increasing activation function, which 

is applicable to each individual entry of its own matrix arguments. 

The error function 𝐸7(𝑡) is introduced using analogy with gradient-descent iterations for 

unconstrained nonlinear optimization. The residual 𝐸(𝑡) = 𝐴𝑉(𝑡)𝐵 − 𝐷 is forced to the null matrix 

Stanimirović et al. (2018). The gradient of  

ε1 =
||𝐸(𝑡)||!"

2 =
||𝐴𝑉(𝑡)𝐵 − 𝐷||!"

2  

is equal to 

89#
81

= ∇𝜀1 = 𝐴4(𝐴𝑉(𝑡)𝐵 − 𝐷)𝐵4. 

The GNN dynamic evolution minimizes ||𝐴𝑉(𝑡)𝐵 − 𝐷||:" and it is established on the direct 

correlation (1) among �̇�(𝑡) and ∇𝜀1 (Wang, 1993; Zhang et al., 2009; Wang, 1997). 

3. Research Questions  

The subsequent motivation questions were posed during the study: 

§ How to increase the speed of obtaining numerical solution of 𝐴𝑋𝐵 = 𝐷? 

§ How to define the GNN design for solving 𝐴𝑉(𝑡)𝐵 = 𝐷 established on the residual matrix 

𝐸7(𝑡) ≔ ∇ε1(𝑡) = 𝐴4(𝐴𝑉(𝑡)𝐵 − 𝐷)𝐵4 = 𝐴4𝐸(𝑡)𝐵4? 

§ What is the convergence speed of the new dynamics which is developed on the basis of 𝐸7(𝑡)? 

§ What is the numerical behaviour of the new model? 

4. Purpose of the Study 

The intention of this research is to find new GNN-type dynamical system based on a novel error 

functions.  

Standard GNN design solves the GLME 𝐴𝑋𝐵 − 𝐷 = 0 under the condition 𝐴𝐴;𝐷𝐵;𝐵 = 𝐷 

(Stanimirović & Petković, 2018). Our aim is to avoid this constraint and originate dynamical evolutions 

based on the error function that tends to zero without restrictions. 

Our motivation in defining new error function arises from gradient-descent methods for minimizing 

nonlinear multivariate functions. Our leading idea is the fact that the GLME ∇𝜀1 = 𝐴4(𝐴𝑉(𝑡)𝐵 − 𝐷)𝐵4 =

0 is convergent without restrictions. Results about solvability of GLME and general solutions are described 

in Wang et al. (2018). 

5. Research Methods 
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To improve the standard GNN design, we introduced a new GGNN dynamical flow. More precisely, 

instead of using the classical error matrix 𝐸(𝑡) = 𝐷 − 𝐴𝑉(𝑡)𝐵, we took for error matrix the right hand side 

of GNN model (1), i.e., the gradient of ε of the GNN formula. That leads us to a new evolution 

𝐸7(𝑡) =
+
"
#$%1(2)*

#1
= +

"

#,|./01(2)3|,$
"

#1
= −𝐴4(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4. 

We denote new error matrix with 𝐸7, because the error function would take the value of the gradient 

and seek minimization over the gradient. 

Next step is to define new model with this error matrix, called Gradient GNN, or shortly GGNN. 

Let us define goal function ε7 = 3|𝐸7|3!
"
, whose gradient is equal to 

#$%%1(2)*
#1

=
8<=&(./01(2)3)3&<$

"

81
= −2𝐴4𝐴(𝐴4(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4)𝐵𝐵4. 

Using the GNN-type evolution design, the dynamical system for GGNN formula is expanded as  

𝑉7̇(𝑡) =
d1%(2)
d2

= γ𝐴4𝐴(𝐴4(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4)𝐵𝐵4, 

where γ > 	0 scales the convergence. For a faster convergence, it is better to use greater values of γ, as in 

the GNN model. Hence, the corresponding nonlinear GGNN model is given by the following dynamics: 

�̇�(𝑡) = γ𝐴4𝐴ℱ(𝐴>(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4)𝐵𝐵4,             (2) 

where ℱ( ) is an odd and monotonically increasing function array based on arbitrary monotonically 

increasing odd activation function 𝑓(⋅). 

Figure 1 represents the Simulink implementation of GGNN(A,B,D) dynamics (2). 

 

 

 Simulink implementation of GGNN dynamics 
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6. Findings 

In this section we perform numerical examples to examine the efficiency of the proposed GGNN 

model shown in Figure 1. 

The subsequent activation functions 𝑓(⋅) are used in numerical experiments: 

§ Linear activation function   𝑓?@A(𝑥) = 𝑥 

§ The Power-sigmoid activation function 

𝑓BC(𝑥, 𝜌, 𝜚) = H
𝑥D,																																						|𝑥| ≥ 1
1 + 𝑒/E

1 − 𝑒/E ∙
1 + 𝑒/EF

1 − 𝑒/EF ,
|𝑥| < 1

 

§ The Smooth power-sigmoid activation function 

𝑓CBC(𝑥, 𝜌, 𝜚) =
1
2𝑥

D +
1 + 𝑒/E

1 − 𝑒/E ∙
1 + 𝑒/EF

1 − 𝑒/EF 

In power-sigmoid activation function and smooth power-sigmoid activation function ϱ > 2, ρ ≥ 3 

is odd integer. We will assume 𝜚 = 	𝜌 = 3 for all examples. 

The Matlab command “A = rand(m,k)*rand(k,n)” is used to generate a random m×n matrix A of rank 

r. 

Table 1 shows experimental results for square regular and non-regular random matrices of 

dimensions n×n. Table 2 shows experimental results obtained on regular and singular matrices of 

dimensions m×n. Here, NRT means that no result was obtained in a reasonable time. Experiments were 

conducted on computer with processor Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz   2.11 GHz, 8 GB 

of RAM and Windows 10 OS. MatLab Version: R2021a. 

Table 1.  Experiment results for squared matrices 
n Rank A Rank B Time GNN GGNN γ GNN CPU 

Time 
GGNN CPU 

Time 
50 2 2 10-6 19.38 19.38 100 20.92 14.45 
50 2 50 10-6 17.29 17.13 100 9.05 15.17 
50 50 50 10-6 14.75 14.23 100 8.76 15.30 
50 10 10 10-6 15.77 15.59 100 7.58 16.95 
50 10 50 10-6 15.44 15.11 100 7.08 14.79 
50 50 50 10 2.30 4.022 100 29.61 28.10 
50 2 2 10 NRT 19.30 100 NRT 20.38 
10 10 10 10-2 2.77 2.59 1 8.82 1.43 
10 2 10 10-2 3.36 3.34 1 16.22 1.43 
10 2 2 10-2 3.60 3.54 1 9.01 1.38 
10 5 10 10-2 3.09 2.96 1 9.78 1.34 
10 5 5 10-2 3.22 3.13 1 9.92 1.47 

 

Table 2.  Experiment results for non-squared matrices 
m n Rank 

A 
Rank 

B 
Time GNN GGNN γ GNN CPU 

Time 
GGNN CPU 

Time 
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25 20 20 20 10-6 26.45 12,85 100 9.25 3.42 
25 20 2 2 10-6 105.80 59.11 100 1.17 1.55 
25 20 20 2 10-6 53.10 48.76 100 1.37 2.08 
25 20 10 2 10-6 72.35 43.07 100 1.51 1.00 
25 20 10 10 10-6 33.65 28.49 100 1.58 2.16 
25 20 20 10 10-6 27.58 17.22 100 1.14 2.07 
10 8 8 8 10-3 6.19 4.26 1 0.55 1.12 
10 8 2 2 10-3 11.87 10.22 1 0.52 0.91 
10 8 8 2 10-3 6.63 6.18 1 0.70 0.90 
10 8 5 2 10-3 7.45 7.39 1 1.44 0.91 
10 8 5 5 10-3 7.37 5.88 1 0.59 0.86 
10 8 8 5 10-3 6.33 5.38 1 0.60 0.89 

 

Figure 2 illustrate trajectories of residual errors ||𝐷 − 𝐴𝑉(𝑡)𝐵|| for different activation functions. 

The graphs included in this figure show faster convergence of nonlinear GGNN models with respect to the 

linear GGNN. 

 

 

 Trajectory of the error norm for different activation functions of GGNN 

Figure 3 demonstrates a comparison of convergence rates of GNN and GGNN. 

 

  

(a) Linear Activation Function  (b) Power-Sigmoid Activation Function 
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(c) Smooth Power-Sigmoid Activation Function 

 Frobenius norm of the error matrix 𝐷 − 𝐴𝑉(𝑡)𝐵 of GGNN against GNN. 

Figure 3 clearly shows a faster convergence of the GGNN model again the GNN dynamics.  

7. Conclusion 

In this paper, we proposed a new method for solving the equation 𝐴𝑋𝐵 = 𝐷 using the replacement 

of the error function and introducing a new recurrent model of GGNN. The experimental results showed 

that the proposed model GGNN faster converges than the GNN model without losing quality for various 

dimensions and ranks. Further, a non-linear activation function speeds up the convergence compared to the 

linear activation function for all studied cases. 

Other important achievement is the fact that proposed GGNN solved all tested equations even when 

GNN was not able to finish computations in reasonable time. 
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