

European Proceedings of
Computers and Technology

EpCT

www.europeanproceedings.com e-ISSN: 2672-8834

The Author(s) 2023. This article is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

DOI: 10.15405/epct.23021.31

HMMOCS 2022

International Workshop "Hybrid methods of modeling and optimization in complex systems"

GRADIENT NEURAL DYNAMICS BASED ON MODIFIED ERROR
FUNCTION

Predrag S. Stanimirović (a)*, Dimitrios Gerontitis (b), Nataša Tešić (c),
Vladimir L. Kazakovtsev (d), Vladislav Stasiuk (e), Xinwei Cao (f)

*Corresponding author

(a) University of Niš, Faculty of Sciences and Mathematics, Niš, 18000, Serbia,
Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”, Siberian Federal University; 79,

Prosp. Svobodny, Krasnoyarsk, 660041, Russia, pecko@pmf.ni.ac.rs
(b) Department of Information and Electronic Engineering, International Hellenic University, Thessaloniki, Greece,

dimitrios_gerontitis@yahoo.gr
(c) Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad, 21000,

Serbia, dmi.3d.19@student.pmf.uns.ac.rs
(d) Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”, Siberian Federal University,

79, Prosp. Svobodny, Krasnoyarsk, 660041, Russia, vokz@bk.ru
(e) Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”, Siberian Federal University,

79, Prosp. Svobodny, Krasnoyarsk, 660041, Russia, vstasyuk@sfu-kras.ru
(f) School of Business, Jiangnan University, Lihu Blvd, Wuxi, 214122, China

Abstract

The present study is devoted to methods for the numerical solution to the system of equations AXB=D. In
the case certain conditions are met, the classical gradient neural network (GNN) dynamics obtains fast
convergence. However, if those conditions are not satisfied, solution to the equation does not exist and
therefore the error function E(t):=AV(t)B-D cannot be equal to zero, which increases the CPU time required
for the calculation. In this paper, the solution to the matrix equation AXB = D is studied using the novel
Gradient Neural Network (GGNN) model, termed as GGNN(A,B,D). The GGNN model is developed using
a gradient of the error matrix used in the development of the GNN model. The proposed method uses a
novel objective function that is guaranteed to converge to zero, thus reducing the execution time of the
Simulink implementation. The GGNN-based dynamical systems for computing generalized inverses are
also discussed. The conducted computational experiments have shown the applicability and advantage of
the developed method.

2672-8834 © 2023 Published by European Publisher.

Keywords: Gradient neural network, generalized inverses, moore-penrose inverse, linear matrix equations

https://doi.org/10.15405/epct.23021.31
Corresponding Author: Predrag S. Stanimirović
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 257

1. Introduction

In this study work, we deal with the real-time solutions of the general linear matrix equation (GLME)

𝐴𝑋𝐵 = 𝐷 utilizing the gradient-established neural network (GNN) dynamical evolution, termed as

GNN(A,B,D). Previously, GNN models were described and investigated in the works of Wang (1992,

1993), Zhang et al. (2009), Wang (1997), Wei (2000), Wang and Li (1994), Ding and Chen (2005), Zhang

and Chen (2008). Convergence investigation indicates that the output of GNN(A,B,D) is specified by the

choice of the initial state and belongs to the set of theoretical solutions to AXB=D. Also, this work contains

diverse applications of the GNN(A,B,D) design described in Stanimirović et al. (2017, 2019, 2022) and

improvements of proposed models for solving linear systems Ax=b described in Urquhart (1968). Most

applications examined the impact of activation functions on the convergence rate of GNN(A,B,D)

theoretically and by means of simulation experiments. In the last section, we will test the novel gradient-

based GNN formula (GGNN), which includes a different error matrix than the GNN model.

The implementation is defined on the set of real matrices and is based on making simulations of

considered GNN-based models for solving matrix equations. The numerical experiments are tested in

MATLAB Simulink.

2. Problem Statement

Recurrent neural networks (RNNs) form an essential class of methods for solving the matrix

equations. RNNs are splitted into two categories: Gradient Neural Networks (GNN) and Zhang (or Zeroing)

Neural Networks (ZNN). The GNN flow is explicit and efficient in solving time-invariant problems, which

assumes constant coefficients matrices in underlying matrix equations. ZNN models are mostly implicit

and efficient in solving time-varying problems (entries involved in coefficient matrices of the equations are

functions of time 𝑡 ∈ R, 𝑡 > 0).

General GNN neural dynamics are used to solve 𝐴𝑋𝐵 = 𝐷. The dynamical evolution is developed

based on the residual 𝐸(𝑡):= 𝐴𝑉(𝑡)𝐵 − 𝐷, such that V(t) is an unknown state-variable matrix which

converges to the required matrix X of the GLME 𝐴𝑋𝐵 = 𝐷. The goal function ε(𝑡) = 3|𝐷 − 𝐴𝑉(𝑡)𝐵|3
!
"/2,

is the function of the Frobenius norm. The gradient matrix of the objective ε(𝑡)	is computed as

#$%&(()*
#&

= +
"

#,|./01(2)3|,!
"

#&
= −A4(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4.

By the GNN evolution, one derives the dynamics

�̇�(𝑡) = 51(2)
52

= −γ;#$%1(2)*
#1

< = −γ𝐴4(𝐴𝑉(𝑡)𝐵 − 𝐷)𝐵4, (1)

in which �̇�(𝑡) is the time derivative and 	γ > 	0 is a positive gain parameter necessary for accelerating

convergence. A faster convergence is achieved by increasing the value γ. We denote this model as

GNN(A,B,D). As already mentioned, the considered matrix-valued residual which cancels out over time is

𝐸(t) = 𝐷 − 𝐴𝑉(𝑡)𝐵, such that V(t) is the activation state variables matrix. The nonlinear GNN(A,B,D)

design is defined by

https://doi.org/10.15405/epct.23021.31
Corresponding Author: Predrag S. Stanimirović
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 258

d1(2)
d2

= �̇�(𝑡) = γ𝐴4ℱ(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4.

The function array ℱ(C) includes any odd and monotonically-increasing activation function, which

is applicable to each individual entry of its own matrix arguments.

The error function 𝐸7(𝑡) is introduced using analogy with gradient-descent iterations for

unconstrained nonlinear optimization. The residual 𝐸(𝑡) = 𝐴𝑉(𝑡)𝐵 − 𝐷 is forced to the null matrix

Stanimirović et al. (2018). The gradient of

ε1 =
||𝐸(𝑡)||!"

2 =
||𝐴𝑉(𝑡)𝐵 − 𝐷||!"

2

is equal to

89#
81

= ∇𝜀1 = 𝐴4(𝐴𝑉(𝑡)𝐵 − 𝐷)𝐵4.

The GNN dynamic evolution minimizes ||𝐴𝑉(𝑡)𝐵 − 𝐷||:" and it is established on the direct

correlation (1) among �̇�(𝑡) and ∇𝜀1 (Wang, 1993; Zhang et al., 2009; Wang, 1997).

3. Research Questions

The subsequent motivation questions were posed during the study:

§ How to increase the speed of obtaining numerical solution of 𝐴𝑋𝐵 = 𝐷?

§ How to define the GNN design for solving 𝐴𝑉(𝑡)𝐵 = 𝐷 established on the residual matrix

𝐸7(𝑡) ≔ ∇ε1(𝑡) = 𝐴4(𝐴𝑉(𝑡)𝐵 − 𝐷)𝐵4 = 𝐴4𝐸(𝑡)𝐵4?

§ What is the convergence speed of the new dynamics which is developed on the basis of 𝐸7(𝑡)?

§ What is the numerical behaviour of the new model?

4. Purpose of the Study

The intention of this research is to find new GNN-type dynamical system based on a novel error

functions.

Standard GNN design solves the GLME 𝐴𝑋𝐵 − 𝐷 = 0 under the condition 𝐴𝐴;𝐷𝐵;𝐵 = 𝐷

(Stanimirović & Petković, 2018). Our aim is to avoid this constraint and originate dynamical evolutions

based on the error function that tends to zero without restrictions.

Our motivation in defining new error function arises from gradient-descent methods for minimizing

nonlinear multivariate functions. Our leading idea is the fact that the GLME ∇𝜀1 = 𝐴4(𝐴𝑉(𝑡)𝐵 − 𝐷)𝐵4 =

0 is convergent without restrictions. Results about solvability of GLME and general solutions are described

in Wang et al. (2018).

5. Research Methods

https://doi.org/10.15405/epct.23021.31
Corresponding Author: Predrag S. Stanimirović
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 259

To improve the standard GNN design, we introduced a new GGNN dynamical flow. More precisely,

instead of using the classical error matrix 𝐸(𝑡) = 𝐷 − 𝐴𝑉(𝑡)𝐵, we took for error matrix the right hand side

of GNN model (1), i.e., the gradient of ε of the GNN formula. That leads us to a new evolution

𝐸7(𝑡) =
+
"
#$%1(2)*

#1
= +

"

#,|./01(2)3|,$
"

#1
= −𝐴4(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4.

We denote new error matrix with 𝐸7, because the error function would take the value of the gradient

and seek minimization over the gradient.

Next step is to define new model with this error matrix, called Gradient GNN, or shortly GGNN.

Let us define goal function ε7 = 3|𝐸7|3!
"
, whose gradient is equal to

#$%%1(2)*
#1

=
8<=&(./01(2)3)3&<$

"

81
= −2𝐴4𝐴(𝐴4(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4)𝐵𝐵4.

Using the GNN-type evolution design, the dynamical system for GGNN formula is expanded as

𝑉7̇(𝑡) =
d1%(2)
d2

= γ𝐴4𝐴(𝐴4(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4)𝐵𝐵4,

where γ > 	0 scales the convergence. For a faster convergence, it is better to use greater values of γ, as in

the GNN model. Hence, the corresponding nonlinear GGNN model is given by the following dynamics:

�̇�(𝑡) = γ𝐴4𝐴ℱ(𝐴>(𝐷 − 𝐴𝑉(𝑡)𝐵)𝐵4)𝐵𝐵4, (2)

where ℱ() is an odd and monotonically increasing function array based on arbitrary monotonically

increasing odd activation function 𝑓(⋅).

Figure 1 represents the Simulink implementation of GGNN(A,B,D) dynamics (2).

 Simulink implementation of GGNN dynamics

https://doi.org/10.15405/epct.23021.31
Corresponding Author: Predrag S. Stanimirović
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 260

6. Findings

In this section we perform numerical examples to examine the efficiency of the proposed GGNN

model shown in Figure 1.

The subsequent activation functions 𝑓(⋅) are used in numerical experiments:

§ Linear activation function 𝑓?@A(𝑥) = 𝑥

§ The Power-sigmoid activation function

𝑓BC(𝑥, 𝜌, 𝜚) = H
𝑥D,																																						|𝑥| ≥ 1
1 + 𝑒/E

1 − 𝑒/E ∙
1 + 𝑒/EF

1 − 𝑒/EF ,
|𝑥| < 1

§ The Smooth power-sigmoid activation function

𝑓CBC(𝑥, 𝜌, 𝜚) =
1
2𝑥

D +
1 + 𝑒/E

1 − 𝑒/E ∙
1 + 𝑒/EF

1 − 𝑒/EF

In power-sigmoid activation function and smooth power-sigmoid activation function ϱ > 2, ρ ≥ 3

is odd integer. We will assume 𝜚 = 	𝜌 = 3 for all examples.

The Matlab command “A = rand(m,k)*rand(k,n)” is used to generate a random m×n matrix A of rank

r.

Table 1 shows experimental results for square regular and non-regular random matrices of

dimensions n×n. Table 2 shows experimental results obtained on regular and singular matrices of

dimensions m×n. Here, NRT means that no result was obtained in a reasonable time. Experiments were

conducted on computer with processor Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz, 8 GB

of RAM and Windows 10 OS. MatLab Version: R2021a.

Table 1. Experiment results for squared matrices
n Rank A Rank B Time GNN GGNN γ GNN CPU

Time
GGNN CPU

Time
50 2 2 10-6 19.38 19.38 100 20.92 14.45
50 2 50 10-6 17.29 17.13 100 9.05 15.17
50 50 50 10-6 14.75 14.23 100 8.76 15.30
50 10 10 10-6 15.77 15.59 100 7.58 16.95
50 10 50 10-6 15.44 15.11 100 7.08 14.79
50 50 50 10 2.30 4.022 100 29.61 28.10
50 2 2 10 NRT 19.30 100 NRT 20.38
10 10 10 10-2 2.77 2.59 1 8.82 1.43
10 2 10 10-2 3.36 3.34 1 16.22 1.43
10 2 2 10-2 3.60 3.54 1 9.01 1.38
10 5 10 10-2 3.09 2.96 1 9.78 1.34
10 5 5 10-2 3.22 3.13 1 9.92 1.47

Table 2. Experiment results for non-squared matrices
m n Rank

A
Rank

B
Time GNN GGNN γ GNN CPU

Time
GGNN CPU

Time

https://doi.org/10.15405/epct.23021.31
Corresponding Author: Predrag S. Stanimirović
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 261

25 20 20 20 10-6 26.45 12,85 100 9.25 3.42
25 20 2 2 10-6 105.80 59.11 100 1.17 1.55
25 20 20 2 10-6 53.10 48.76 100 1.37 2.08
25 20 10 2 10-6 72.35 43.07 100 1.51 1.00
25 20 10 10 10-6 33.65 28.49 100 1.58 2.16
25 20 20 10 10-6 27.58 17.22 100 1.14 2.07
10 8 8 8 10-3 6.19 4.26 1 0.55 1.12
10 8 2 2 10-3 11.87 10.22 1 0.52 0.91
10 8 8 2 10-3 6.63 6.18 1 0.70 0.90
10 8 5 2 10-3 7.45 7.39 1 1.44 0.91
10 8 5 5 10-3 7.37 5.88 1 0.59 0.86
10 8 8 5 10-3 6.33 5.38 1 0.60 0.89

Figure 2 illustrate trajectories of residual errors ||𝐷 − 𝐴𝑉(𝑡)𝐵|| for different activation functions.

The graphs included in this figure show faster convergence of nonlinear GGNN models with respect to the

linear GGNN.

 Trajectory of the error norm for different activation functions of GGNN

Figure 3 demonstrates a comparison of convergence rates of GNN and GGNN.

(a) Linear Activation Function (b) Power-Sigmoid Activation Function

https://doi.org/10.15405/epct.23021.31
Corresponding Author: Predrag S. Stanimirović
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 262

(c) Smooth Power-Sigmoid Activation Function

 Frobenius norm of the error matrix 𝐷 − 𝐴𝑉(𝑡)𝐵 of GGNN against GNN.

Figure 3 clearly shows a faster convergence of the GGNN model again the GNN dynamics.

7. Conclusion

In this paper, we proposed a new method for solving the equation 𝐴𝑋𝐵 = 𝐷 using the replacement

of the error function and introducing a new recurrent model of GGNN. The experimental results showed

that the proposed model GGNN faster converges than the GNN model without losing quality for various

dimensions and ranks. Further, a non-linear activation function speeds up the convergence compared to the

linear activation function for all studied cases.

Other important achievement is the fact that proposed GGNN solved all tested equations even when

GNN was not able to finish computations in reasonable time.

Acknowledgments

Predrag Stanimirović is supported by the Science Fund of the Republic of Serbia, (No. 7750185,

Quantitative Automata Models: Fundamental Problems and Applications - QUAM).

This work was supported by the Ministry of Science and Higher Education of the Russian Federation

(Grant No. 075-15-2022-1121).

References

Ding, F., & Chen, T. (2005). Gradient based iterative algorithms for solving a class of matrix equations.
IEEE Transactions on Automatic Control, 50(8), 1216-1221.
https://doi.org/10.1109/TAC.2005.852558

Stanimirović, P. S., Ćirić, M., Stojanović, I., & Gerontitis, D. (2017). Conditions for Existence,
Representations, and Computation of Matrix Generalized Inverses. Complexity, 1-27.
https://doi.org/10.1155/2017/6429725

Stanimirović, P. S., & Petković, M. D. (2018). Gradient neural dynamics for solving matrix equations and
their applications. Neurocomputing, 306, 200-212. https://doi.org/10.1016/j.neucom.2018.03.058

Stanimirović, P. S., Petković, M. D., & Gerontitis, D. (2018). Gradient neural network with nonlinear
activation for computing inner inverses and the Drazin inverse. Neural Processing Letters, 48(1),
109-133. https://doi.org/10.1007/s11063-017-9705-4

https://doi.org/10.15405/epct.23021.31
Corresponding Author: Predrag S. Stanimirović
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 263

Stanimirović, P. S., Petković, M. D., & Mosić, D. (2022). Exact solutions and convergence of gradient
based dynamical systems for computing outer inverses. Applied Mathematics and Computation,
412, 126588. https://doi.org/10.1016/j.amc.2021.126588

Stanimirović, P. S., Wei, Y., Kolundžija, D., Sendra, J. R., & Sendra, J. (2019). An application of computer
algebra and dynamical systems. Proceedings of International Conference on Algebraic Informatics,
225-236. https://doi.org/10.1007/978-3-030-21363-3_19

Urquhart, N. S. (1968). Computation of generalized inverse matrices which satisfy specified conditions.
SIAM Review, 10(2), 216-218. https://doi.org/10.1137/1010035

Wang, G., Wei, Y., & Qiao, S. (2018). Generalized Inverses: Theory and Computations, Developments in
Mathematics 53. Springer. Science Press. https://doi.org/10.1007/978-981-13-0146-9

Wang, J. (1992). Electronic realisation of recurrent neural network for solving simultaneous linear
equations. Electronics Letters, 28, 493-495. https://doi.org/10.1049/el:19920311

Wang, J. (1993). A recurrent neural network for real-time matrix inversion. Applied Mathematics and
Computation, 55(1), 89-100. https://doi.org/10.1016/0096-3003(93)90007-2

Wang, J. (1997). Recurrent neural networks for computing pseudoinverses of rank-deficient matrices. SIAM
Journal on Scientific Computing, 18(5), 1479-1493. https://doi.org/10.1137/s1064827594267161

Wang, J., & Li, H. (1994). Solving simultaneous linear equations using recurrent neural networks.
Information Sciences, 76(3-4), 255-277. https://doi.org/10.1016/0020-0255(94)90012-4

Wei, Y. (2000). Recurrent neural networks for computing weighted Moore–Penrose inverse. Applied
Mathematics and Computation, 116(3), 279-287. https://doi.org/10.1016/s0096-3003(99)00147-2

Zhang, Y., & Chen, K. (2008). Comparison on Zhang neural network and gradient neural network for time-
varying linear matrix equation AXB=C solving. Proceedings of 2008 IEEE International
Conference on Industrial Technology, 1-6. https://doi.org/10.1109/ICIT.2008.4608579

Zhang, Y., Chen, K., & Tan, H. Z. (2009). Performance analysis of gradient neural network exploited for
online time-varying matrix inversion. IEEE Transactions on Automatic Control, 54(8), 1940-1945.
https://doi.org/10.1109/TAC.2009.2023779

