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Abstract 
 

Automatic clustering involves dividing a set of objects into subsets so that the objects from one subset are 
more similar to each other than to the objects from other subsets according to some criterion. The paper 
proposes an algorithm for clustering data using the k-means algorithm combined with molecular chemical 
reactions and with various types of distance measures: Euclidean distance, Squared Euclidean distance, 
Manhattan distance. This approach mimics a chemical reaction process in which reactants interact with one 
another. Every chemical reaction process generate a new molecular structure in the environment. By 
molecular structure, we mean a possible solution to data clustering, by optimizing the molecular chemical 
reactions we mean optimizing the results of data clustering (search for a global optimal solution). The 
solution obtained with k-means is used as an initial molecular structure solution to optimize chemical 
reactions by generating new solutions: single-molecule collision, single-molecule decomposition, 
intermolecular collision, and intermolecular synthesis. Computational experiments demonstrate the 
comparative efficiency and accuracy of using the k-means algorithm combined with molecular chemical 
reactions.   
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1. Introduction 

One of the most well-known automatic grouping models is the k-means model (1) (Hossain et al., 

2019; Li & Wu, 2012), which was proposed by Steinhaus (1956). 

argmin𝐹(𝑋!,..., 𝑋") = ∑ min
#∈{!,"}

(𝑋# − 𝐴((
)
                                                (1) 

The goal of the k-means problem is to find k points (centers, centroids) X1,...,Xk in a d-dimensional 

space such that the sum of the squared distances from the known points A1,...,AN to the nearest of the desired 

points reaches a minimum. Lloyd (1982) algorithmically implemented the k-means problem. In the works 

MacQueen (1967), the basic k-means algorithm, also known as Lloyd's algorithm, consists of iterative 

repetition of two steps: 

§ Given: k initial cluster centers (centroids). 

Step 1. Create a new cluster Cj (𝑗 = 1, 𝑘)...... by assigning each data point to the closest cluster center 

(centroid). 

Step 2. Calculation of new cluster centers. 

Repeat steps 1 and 2 until there are no more changes within each cluster. 

In the k-means algorithm, it is necessary to initially predict the number of groups (subsets). In 

addition, the result obtained depends on the initial choice of centers. 

Kaufman and Rousseeuw (1987) presented the k-medoids model (PAM, Partitioning Around 

Medoids) close to k-means. The centers are clustered objects (medoids) that are part of the set under study. 

The algorithm is more resistant to outliers and noise than the k-means algorithm; however, it is inefficient 

when applied to large datasets due to time complexity. The k-medians algorithm (Jain & Dubes, 1988) is a 

variation of the k-means algorithm, where the median is calculated instead of the mean to determine the 

cluster centroid. Kaufman and Rousseeuw (1990) proposed the CLARA (Clustering Large Applications) 

algorithm, based on the PAM algorithm, for clustering objects in large databases in order to reduce 

computation time. In (Ng & Han, 2002) the authors propose the CLARANS (Clustering Large Applications 

based upon Randomized Search) algorithm, which is aimed at using a randomized search to facilitate the 

clustering of a large number of objects. 

Algorithms k-means, k-medians, k-medoid, PAM, CLARA, CLARANS belong to the class of 

clustering algorithms based on partitioning methods (Partitioning clustering). 

The current literature offers many heuristic approaches (Arthur & Vassilvitskii, 2007) to setting the 

initial centroids for the k-means algorithm, which are basically various evolutionary and random search 

methods. Local search algorithms and randomized algorithms based on them are presented in a large 

number of publications. For example, Variable Neighborhood Search (VNS) algorithms (Mladenović & 

Hansen, 1997; Rozhnov et al., 2019) or agglomeration algorithms (Sun et al., 2014) sometimes perform 

well. Initialization procedures for local search algorithms are also widely presented, including random 

filling and estimation of the distribution of demand points (Arthur & Vassilvitskii, 2007). However, in 

many cases, even repeated runs of simple local search algorithms from various randomly generated 
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solutions do not provide a solution to the problem close to the global optimum. More complex algorithms 

make it possible to obtain the values of the objective function (1) many times better than local search 

methods (Rozhnov et al., 2019). 

A popular idea is to use genetic algorithms and other evolutionary approaches to improve local 

search results (Krishna & Murty, 1999; Maulik & Bandyopadhyay, 2000). Such algorithms combine local 

minima obtained using the k-means algorithm. Heretic algorithms operate on a certain set (population) of 

candidate solutions and include special genetic operators (algorithms) for initialization of selection, 

crossover, and mutation. The mutation operator randomly changes the resulting solutions and provides 

some diversity in the population. However, in such algorithms, as the number of iterations increases, the 

population degenerates into a certain set of solutions that are close to each other. Larger populations as well 

as dynamically growing populations improve this situation. 

Classical clustering algorithms, such as k-means, perform a local search, improving the previous 

result. The result of the algorithm depends on the initial solution chosen. Therefore, the search for the 

optimal solution requires multiple attempts to run algorithms with procedures for random selection of initial 

solutions or random selection of local search (Vidyasagar, 1998), or the use of these procedures in the 

algorithm simultaneously. More complex algorithms can be applied, such as genetic algorithms, neural 

networks (Holland, 1975), simulated annealing algorithm (Kirkpatrick et al., 1983). These algorithms are 

based on the idea of modeling natural processes. The authors of the paper “Genetic K-Means algorithm” 

(Krishna & Murty, 1999) showed the advantage of genetic algorithms over classical algorithms. The genetic 

algorithm is a representative of evolutionary optimization algorithms (search for the optimal solution). 

In his work, J. Holland introduces the concept of a fitness function (Holland, 1975), which is 

intended to determine the best solution for a genetic algorithm. The fitness function is the objective 

function. The purpose of crossing genes is to achieve the best value of the objective function. 

The genetic algorithm for solving the discrete p-median problem proposed by Hosage and 

Goodchild (1986) preceded the genetic algorithm for the k-means problem. The authors of (Bozkaya et al., 

2002) presented a genetic algorithm with solution coding in the form of a set of indices of network nodes 

chosen as a center using several crossing operators. The algorithm gave more accurate results with very 

slow convergence. In their work, Alp et al. (2003) presented a simple and faster genetic algorithm with a 

special crossing procedure - a greedy (agglomerative) heuristic procedure, which also gives exact results 

for the p-median network problem. This idea was inherited in (Kazakovtsev & Antamoshkin, 2014). Many 

mutation methods presented in (Kazakovtsev & Antamoshkin, 2014; Kwedlo & Iwanowicz, 2010) can be 

used in genetic algorithms for k-means and similar problems. In the k-means algorithm, usually the initial 

solution is a subset of the original data. In (He & Yu, 2019), the authors solve an alternative k-means 

problem aimed at increasing the stability of clustering instead of minimizing (1). The authors of (Pizzuti & 

Procopio, 2017) solve the problem with a mathematical formulation different from (1) and use cluster 

recalculation in accordance with (1) as a mutation operator. A similar coding is used in (Krishna & Murty, 

1999), where the authors propose a mutation operator that changes the assignment of individual data objects 

to clusters. In the mutation operator is described as a procedure that guarantees the diversity of a population 

(Eremeev, 2012). For the k-means and p-median problem, the mutation procedure, as a rule, changes one 

or more solutions, replacing some centers (Krishna & Murty, 1999; Maulik & Bandyopadhyay, 2000). 
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Different mutation operators have been developed for different decision encoding methods: bit 

inversion for binary encoding (Holland, 1975), swap, insertion, inversion, and bias permutation (Larranaga 

et al., 1999) for variable length solutions, Gaussian mutation (Sarangi et al., 2015) and polynomial mutation 

for real encoding (Deb & Deb, 2012). Some studies propose a combination of mutation operators (Deep & 

Mebrahtu, 2011) or self-adaptive mutation operators (McGinley et al., 2011). The efficiency of various 

mutation operators depends on the parameters of the genetic algorithm (Osaba et al., 2014) and the type of 

problem (Karthikeyan et al., 2013). In Krishna and Murty (1999), Cheng et al. (2006), the authors propose 

to use the k-means algorithm as a mutation operator. Each of these algorithms declares a local search as a 

mutation operator. The structure of the genetic algorithm allows us to use a wide range of variants of genetic 

operators. However, local search is intended to improve an arbitrary solution by transforming it into a local 

optimum and thereby reducing rather than increasing the diversity of solutions. 

2. Problem Statement 

The problem of automatic classification (the problem of automatic clustering) can be described as 

follows. N objects of a certain set must be divided into k non-overlapping subsets so that the objects of one 

subset have similar features with each other and do not have them with objects from other subsets. The 

result clustering depends on the initially selected number of subsets and the measure of similarity 

(difference), expressed as a function of distances. 

In Jain and Dubes (1988), the following formulation of the cluster analysis problem is proposed: let 

there be a sample of research objects A={A1,...,AN}, where N is the sample size. It is required to form k≥2 

classes (groups of objects). The number of classes can be preselected or determined automatically. Each 

object is described using a set of M variables Z1,...,ZM. The set Z={ Z1,...,ZM} can include variables of 

different types. 

3. Research Questions 

The search for an object clustering algorithm that has both high accuracy and stability of the result, 

and at the same time high speed, is one of the problems of automatic grouping of objects. The presented 

work is devoted to the research and development of a new algorithm for automatic grouping of objects, 

which will improve the accuracy and stability of the result of solving practical problems. 

4. Purpose of the Study 

The purpose of the study of this work is to improve the accuracy and stability of the result of solving 

problems of automatic grouping of objects. 

5. Research Methods 

In this paper, we propose an algorithm similar to the genetic algorithm, in which molecular chemical 

reactions are used as the mutation procedure (KCR algorithm). This approach mimics a chemical reaction 

process in which reactants interact with one another. Every chemical reaction process generate a new 
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molecular structure in the environment (Pan et al., 2015). By molecular structure, we mean a possible 

solution to data clustering, by optimizing the molecular chemical reactions we mean optimizing the results 

of data clustering (search for a global optimal solution). 

Imagine a possible solution to clustering as a molecular structure. Let each molecule consist of two 

sets of atoms. The first set of atoms contains a sequence of point numbers A = {A1, A2, … , AN}, the 

second set contains the numbers of clusters from X={X1, X2, ... , Xk} to which the corresponding points 

belong. Figure 1 shows an example of a possible molecular structure that contains three clusters and eight 

points. 

 

 

 Chemical molecular structure coding 

5.1. Generation of new clustering solutions 

The paper proposes to consider and apply four types of chemical reactions: single- molecule 

collision, single-molecule decomposition, intermolecular collision and intermolecular synthesis 

(McNaught & Wilkinson, 1997). 

5.1.1. Single molecule collision 

In one substitution reaction, one element replaces another in a compound. The new molecular 

structure Φ' is obtained as follows. In the initial molecular structure, we randomly select a point and change 

its membership in the X={X1, X2, ... , XK} cluster randomly (Figure 2). 

 

 

 Single molecule collision 

5.1.2. Single molecule decomposition 
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A decomposition reaction is an approach where a more complex substance breaks down into simpler 

parts. In the clustering problem, two new molecular structures Φ1' and Φ2' are generated from the initial 

molecular structure (Figure 3). The new molecular structure Φ1' is obtained as follows. Points with uneven 

numbers and their corresponding cluster numbers are stored in the new molecular structure, and for points 

with even numbers, we determine their belonging to a cluster of X={X1, X2, ... , Xk} randomly. The 

new molecular structure Φ2' is obtained as follows. Points with even numbers and the corresponding cluster 

numbers are stored in the new molecular structure, and for points with uneven numbers, we determine their 

belonging to a cluster of X={X1, X2, ... , Xk} randomly. 

 

 

 Single molecule decomposition 

5.1.3. Intermolecular collision 

In intermolecular collisions, the anions and cations of two compounds switch places and form two 

entirely different compounds. New molecular structures Φ1' и Φ2' is obtained as follows. The numbers of 

two points x and y (x < y) are randomly chosen in two initial molecular structures Φ1 and Φ2. The new 

molecular structure Φ1' is obtained by copying the initial molecular structure Φ2. Then we replace the 

cluster numbers for the ith points (i Î [x,y]) from the molecular structure Φ1. The new molecular structure 

Φ2' is obtained by copying the initial molecular structure Φ1. Then we replace the cluster numbers for the 

ith points (i Î [x,y]) from the molecular structure Φ2 (Figure 4). 
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 Intermolecular collision 

5.1.4. Intermolecular synthesis 

In a synthesis reaction, two or more simple substances combine to form a more complex substance. 

The number of point x is randomly chosen in two initial molecular structures Φ1 and Φ2. The new molecular 

structure Φ' is obtained by copying the initial molecular structure Φ1. Then we replace the cluster numbers 

for the ith points (i Î [x+1,n]) from the molecular structure Φ2 (Figure 5). 

 

 Intermolecular synthesis 
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For each new solution (new molecular structure), we calculate the value of the objective function. 

If the objective function value of the new solution is better than the objective function value of the initial 

solution, then the new molecular structure is a valid solution (see Algorithm 1). In our work, the value of 

the objective function is defined as (1). The distance measures used are described below. 

§ The Minkowski function (Kulin & Kuenne, 1962): 

                                                              (2) 

where x and y are input vectors of dimension M. For parameter p, the following statement ate true (proof): 

for p ³ 1 and p = ¥ the distance is a metric; for p < 1 the distance is not a metric. 

§ The Euclidean distance (EuD). For p = 2, the function (2) the takes the form of Euclidean 

distance: 

                                                                   (3) 

§ The squared Euclidean distance (SEuD): 

                                                                      (4) 

§ The Manhattan distance (ManD). For p = 1, we get (2) the Manhattan distance, which is the 

second most popular distance: 

                                                                   (5) 

5.2. KCR algorithm 

Algorithm 1 KCR  

Require:  The initial data points A1,…,AN, numbers of clusters k, the number of iterations of 

chemical reaction process n. 

Step 1. Generation of a random initial solution Φ = {X1 ... Xk}; 

Step 2. Apply the k-means algorithm to Φ to obtain a local optimum Φ*; 

Step 3. i=1; 

Step 4. Apply the procedures of molecular chemical reactions for the individual Φ* to obtain a new 

solution Φ**: 

Step 4.1. The generation of new clustering solution by Single molecule collision method from Φ*. 

Calculate the objective function (1) of a new molecule 𝐹(Φ!
**); 
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Step 4.2. The generation of new clustering solution by Single molecule decomposition method. 

Calculate the objective function (1) of a new molecule 𝐹(Φ)
**); 

Step 4.3. Randomly the generation of new clustering solution Ψ =	 {𝑋!	. . . 𝑋"}	. The generation of 

new clustering solution by Intermolecular collision method. Calculate the objective function (1) of a new 

molecule 𝐹(Φ+
**); 

Step 4.4. Randomly the generation of new clustering solution Υ =	 {𝑋!	. . . 𝑋"}	. The generation of 

new clustering solution by Intermolecular synthesis method. Calculate the objective function (1) of a new 

molecule 𝐹(Φ,
**); 

Step 5. Determine Φ**, where 𝐹(Φ**) = min	(𝐹(Φ!
**), 𝐹(Φ)

**), 𝐹(Φ+
**), 𝐹(Φ,

**)); 

Step 6. Apply the k-means algorithm to 	Φ** to obtain a local optimum Φ***; 

Step 7. i=i+1;  

Step 8. IF F(Φ***)>F(Φ*) AND i<=n THEN Φ*← Φ**;	go to ШАГ 4 ELSE Φ*← Φ*** 

Step 9. Decode clustering solution Φ*. 

The firstly, the k-means clustering algorithm searches for a local optimal solution Φ*. Next, the 

chemical reactions algorithm runs. Then the best solution is determined from those obtained using the 

chemical reactions algorithm Φ**. And again applying k-means clustering algorithm searches for a new 

solution Φ***. If the found solution Φ*** improves the solution	Φ*, then the desired solution is the solution 

Φ***, otherwise we apply the procedures of molecular chemical reactions for the mutated individual Φ**. 

6. Findings 

In this section, we compare the results of the experiment performed with k-means and KCR 

algorithms with various types of distance measures: Euclidean distance, Squared Euclidean distance, 

Manhattan distance. 

For the experiments, we used Synthetic (artificial) datasets (with cluster labels) (GitHub Inc. [GHI], 

2022), as well as from samples of industrial products (Kazakovtsev et al., 2015; Shkaberina et al., 2020). 

a. Square3 is artificial dataset contains the collection of four clusters (1000 data points, 2 

dimensions). 

b. Microchips 1526IE10_002 set of results of test effects on electrical and radio products for 

monitoring the current-voltage characteristics of input and output circuits of microcircuits (3987 

data points, 67 dimensions). 

Algorithms were implemented in Python. For the computational experiments, we used the following 

test system: AMD Ryzen 5 3500U, 2.10 GHz, 8 CB RAM. 

For various datasets, the minimum (min), maximum (max), mean (mean), standard deviation (σ), 

coefficient of variation (V) and the the span factor (R) of the objective function are calculated (Tables 1, 

2). In the tables, the best mean values of objective function are given in bold.  
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Table 1.  Objective function value summarized after 30 attempts. Synthetic (artificial) dataset 

Parameter 
k-means KCR 

EuD SEuD ManD EuD SEuD ManD 
min 100.2318 100.2318 102.5189 100.2318 100.2318 102.4449 
max 100.2379 100.2379 160.385 100.2379 100.2369 159.8675 
mean 100.2351 100.2353 115.9838 100.2334 100.2334 115.8819 

σ 0.003029 0.002945 24.29265 0.001683 0.001787 24.15255 
V 0.003021 0.002938 20.94486 0.001679 0.001783 20.84239 
R 0.006071 0.006071 57.86609 0.006071 0.00513 57.42261 
 

Table 2.  Objective function value summarized after 30 attempts. Microchips 1526IE10_002 

Parameter 
k-means KCR 

EuD SEuD ManD EuD SEuD ManD 
Two-batch mixed lot (197 data points, 41 dimensions) 

min 0.026981824 0.026981824 0.027030361 0.026976786 0.026976786 0.026981824 
max 0.026981824 0.026981824 0.027030361 0.026981824 0.026981824 0.027030361 
mean 0.026981824 0.026981824 0.027030361 0.026979305 0.026980648 0.027027312 

σ 0 0 0 2.52E-06 2.13E-06 9.20E-06 
V 0 0 0 0.00933682 0.007897671 0.034030838 
R 0 0 0 5.04E-06 5.04E-06 4.85E-05 

Three-batch mixed lot (300 data points, 41 dimensions) 
min 0.048329262 0.048329262 0.048419577 0.048329262 0.048329262 0.048358367 
max 0.048332067 0.048332067 0.04847852 0.048329262 0.048329262 0.048476331 
mean 0.048329449 0.048329636 0.048465557 0.048329262 0.048329262 0.048460111 

σ 7.00E-07 9.53E-07 1.98E-05 3.46E-18 3.46E-18 3.34E-05 
V 0.001447527 0.001972639 0.040875312 7.16E-15 7.16E-15 0.068835581 
R 2.80E-06 2.80E-06 5.89E-05 6.94E-18 6.94E-18 0.000117964 

Four-batch mixed lot (446 data points, 62 dimensions) 
min 0.011871273 0.011871273 0.012025967 0.011871273 0.011871273 0.012021142 
max 0.016308472 0.016308472 0.016554985 0.011885287 0.011904385 0.013707829 
mean 0.012022907 0.012906738 0.012343073 0.011873588 0.011874292 0.012097325 

σ 0.000795859 0.001876659 0.001125694 4.39E-06 8.41E-06 0.000299143 
V 6.619519898 14.54015291 9.12004666 0.0369922 0.070829331 2.472800111 
R 0.0044372 0.0044372 0.004529018 1.40E-05 3.31E-05 0.001686687 

Full mixed lot (3987 data points, 67 dimensions) 
min 0.118946137 0.118946137 0.119723176 0.118946137 0.118946575 0.1197271 
max 0.164975905 0.157709299 0.159640787 0.143888254 0.157709241 0.14263887 
mean 0.129590909 0.129384046 0.126030278 0.125914328 0.127245642 0.124172035 

σ 0.012357251 0.011716148 0.010097741 0.008068167 0.010446673 0.007021172 
V 9.53558456 9.055326403 8.01215488 6.407664014 8.209847419 5.654390752 
R 0.046029769 0.038763163 0.039917611 0.024942118 0.038762666 0.02291177 
 

Computational experiments showed that in the vast majority of cases, minimal mean objective 

function value was demonstrated by KCR algorithm with Euclidean distance. However, using the KCR 
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algorithm with Manhattan distance, in most cases, improves the accuracy of data clustering (Figure 6). In 

addition, the clustering accuracy increases with increasing number of points in the dataset (Table 3). 

Table 3.  Accuracy of data clustering with various measure of distance 

Dataset 
k-means KCR 

EuD SEuD ManD EuD SEuD ManD 

Synthetic dataset 0.771 0.772 0.792 0.772 0.772 0.793 
Two-batch mixed lot 0.754 0.754 0.763 0.75 0.75 0.759 
Three-batch mixed lot 0.695 0.695 0.701 0.698 0.698 0.704 
Four-batch mixed lot 0.676 0.609 0.687 0.678 0.678 0.690 

Full mixed lot 0.493 0.493 0.515 0.509 0.509 0.515 
 

 

 Accuracy of data clustering with various measure of distance 

7. Conclusion 

We proposed KCR algorithm for data clustering, which combines k-means algorithm and chemical 

reaction algorithms, could achieve an effective balance between local search capabilities and global 

exploration capabilities. The new algorithm improves the accuracy of solving the k-means problem. 

Computational experiments showed that in the vast majority of cases, minimal mean objective 

function value was demonstrated by KCR algorithm with Euclidean distance. However, using the KCR 

algorithm with Manhattan distance, in most cases, improves the accuracy of data clustering. In addition, 

the clustering accuracy increases with increasing number of points in the dataset. 
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