

European Proceedings of
Computers and Technology

EpCT

www.europeanproceedings.com e-ISSN: 2672-8834

The Author(s) 2023. This article is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

DOI: 10.15405/epct.23021.25

HMMOCS 2022

International Workshop "Hybrid methods of modeling and optimization in complex systems"

SELECTIVE PRESSURE STRATEGY IN MULTILEVEL
COOPERATIVE COEVOLUTION FOR SOLVING LSGO

PROBLEMS

Aleksei Vakhnin (a)*, Evgenii Sopov (b)
*Corresponding author

(a) Reshetnev Siberian University of Science and Technology, Krasnoyarsk, Russian Federation,

alexeyvah@gmail.com
(b) Siberian federal university, Krasnoyarsk, Russian Federation, evgeniisopov@gmail.com

Abstract

Continuous large-scale global optimization (LSGO) is a challenging task for a wide range of state-of-the
art metaheuristic algorithms. This is due to the curse of dimensionality because the size of the search space
grows exponentially with the increasing the number of variables. Thus, metaheuristics lose efficiency in
solving LSGO problems. For increasing the performance of metaheuristic algorithms in solving LSGO
problems, cooperative coevolution (CC) is used. CC-based metaheuristics have two main control
parameters, which are the population size and the type of variable grouping. In this paper, a novel self-
adaptive multilevel cooperative coevolution algorithm is proposed. The subcomponent optimizer of the
proposed CC-based algorithm is SHADE. The proposed algorithm self-adapts the number of
subcomponents and the population size during the optimization process. The complete title of the proposed
algorithm is CC-SHADE-ML. We have evaluated the performance of the proposed algorithm on fifteen
benchmark problems chosen from the LSGO CEC’2013 benchmark set. The performance of the CC-
SHADE-ML algorithm has been evaluated using well-known mutation strategies and selection operators.
We can conclude that mutation and selection operators make a significant impact in the performance of
DE-based metaheuristics. All numerical experiments are proven statistically.

2672-8834 © 2023 Published by European Publisher.

Keywords: Large-scale global optimization, multilevel cooperation coevolution, differential evolution

https://doi.org/10.15405/epct.23021.25
Corresponding Author: Aleksei Vakhnin
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 202

1. Introduction

Metaheuristics are successfully used in solving black-box optimization problems, see in Zhan et al.

(2022). Potter and Jong (1994) have proposed cooperative coevolution (CC) framework, to increase the

performance of the traditional genetic algorithm (GA) to solve continuous optimization problems. The core

idea of CC is to divide an optimization problem into disjoint subcomponents and evolve them independently

to each other. As authors noted, any optimizer (evolutionary algorithm) can be used to optimize

subcomponents. This research work formed the basis for solving LSGO problems, see in Mahdavi et al.

(2015). Later, it was found that CC is a good tool for solving large-scale global optimization (LSGO)

problems.

In the last two decades, many CC-based approaches have been applied to increase the performance

of metaheuristics for solving real-world LSGO problems (Dong et al., 2010; Maniadakis & Trahanias,

2005). There are three main CC branches depending on variable grouping type: static, random, and

learning-based variable grouping.

Static grouping, this type of variable grouping was proposed in the paper of Potter and Jong (1994)

for the first time. The main idea is to set the fixed number of subcomponents and to define variables in

these subcomponents. It is a preferable grouping if a relationship between variables is known. However,

many real-world LSGO problems are presented by a black-box model.

Random grouping, optimized variables can be placed in different subcomponents many times during

the optimization process (Yang et al., 2008a). When a predefined number of fitness evaluation is reached

or other termination conditions are fulfilled, an algorithm randomly mixes variables between

subcomponents, also the number of subcomponents can be changed. The main idea of random grouping is

to increase the probability that two or more non-separable variables will be in the same subcomponent.

Learning grouping, this grouping is based on finding the original interaction between variables using

special experiments (Omidvar et al., 2014). Usually, learning-based grouping approaches increment each

variable of fitness function and to track changes. Based on the changes, variables are grouped in

subcomponents.

In practice, determining the true relationship between variables is a challenging task, because of

unknown optimization problem properties. In static and random grouping, setting the arbitrary group size

can lead to low performance of an algorithm. On the other hand, learning grouping needs quite a lot of

function evaluations (FEs) to determine true connections between variables, and there is no guarantee that

an EA will perform better using the discovered true connection between variables. Thereby, there is a need

to develop a self-adaptive mechanism for the automatic selection of the number of subcomponents and the

population size.

The rest of the paper is organized as follows: section 2 proposes CC-SHADE-ML, contains

description of selection operators and mutation schemes, section 3 contains experimental setup and results

of numerical experiments. Section 4 concludes the paper.

https://doi.org/10.15405/epct.23021.25
Corresponding Author: Aleksei Vakhnin
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 203

2. Problem Statement

An LSGO problem can be stated as a continuous optimization problem:

𝑓(�̅�) → min
!̅∈$⊂&!

, 𝑓∗ = 𝑓(𝑥∗) ≤ 𝑓(�̅�), 𝑥 ∈ 𝐷 ⊂ 𝑅(,

where 𝑓(�̅�) is an fitness function to be minimized, 𝑓: 𝑅(→ 𝑅), �̅� is an n-dimensional vector of continuous

variables, 𝐷 is the search space defined by box constrains 𝑥*+ ≤ 𝑥* ≤ 𝑥*,, 𝑖 = 1, 𝑛55555, 𝑥*+ and 𝑥*, are the lower

and upper borders of the i-th variable, respectively, 𝑥∗ is a global optimum. It is assumed that the fitness

function is continuous.

3. Research Questions

In course of the study the following questions were raised:

§ What is the role of cooperative coevolution approach in solving LSGO problems?

§ What is the role of selection operators in CC-based evolutionary algorithms in solving LSGO

problems?

§ What is the role of mutation schemes in CC-based evolutionary algorithms in solving LSGO

problems?

4. Purpose of the Study

The answers to the issues raised above will help achieve the goal and contribute to the development

of recommendations on parameters selection in CC-based evolutionary algorithms for solving LSGO

problems.

5. Research Methods

5.1. CC-SHADE-ML

This section gives the description of the proposed algorithm in detail. The algorithm combines

cooperative coevolution, the multilevel self-adaptive approach for selecting the number of subcomponents

and the number of individuals, and SHADE, proposed by Tanabe and Fukunaga (2013), and it is titled as

CC-SHADE-ML. An original idea of using a multilevel approach is proposed in the MLCC algorithm,

proposed by Yang et al. (2008b). Before the main cycle of the optimization process, it is needed to define

a set of integer values, each value is a level of the algorithm with a unique number of subcomponents. The

optimization process is divided into a predefined number of cycles. In each cycle, the number of

subcomponents is selected according to the performance of a decomposition in the previous cycles. In each

cycle, variables are divided in subcomponents randomly. To evaluate the performance of each level, we

use the following formula:

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒* = =𝑓*
-./01. − 𝑓*

2/3.1?/𝑓*
-./01.,

https://doi.org/10.15405/epct.23021.25
Corresponding Author: Aleksei Vakhnin
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 204

here 𝑓*
-./01. and 𝑓*

2/3.1 the best-found fitness values before and after the optimization cycle in the i-th

level. If 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒* is equal to a value which is less than 1E-4, then it is set to 1E-4. In the beginning

of the optimization process, all values of 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒* are set to 1.0. The selection probability of each

level is calculated using the following formula:

𝑝* =
𝑒4∗5.1/0162(7."

∑ 𝑒4∗5.1/0162(7."3
89)

, 𝑖 = {1,2, … , 𝑡},

here, k is a control parameter and it was set to 7 according to our numerical experiments. Also, authors of

MLCC have noted that in their case, when k equals to 7, MLCC shows better performance. In each new

optimization cycle, it is needed to recalculate the performance of the last applied level and to select a new

level based on new probabilities. In this study, the number of cycles was set to 50. SaNSDE, proposed by

Yang et al. (2007), is used in MLCC as optimizers and has the fixed population size. The population size,

in population-based searching algorithms, is one the most important parameter. The proposed algorithm

uses the same idea in selection the number of individuals as MLCC uses in selection the number of

subcomponents.

The proposed CC-SHADE-ML algorithm differs from MLCC in the following. It uses SHADE

instead of SaNSDE and extends MLCC by applying a self-adaptation multilevel (ML) approach for the

population size. The pseudo-code of CC-SHADE-ML is presented in Table 1.

5.2. Operators of Selection in DE

In addition to the population size and the number of subcomponents, the type of mutation and

selection also significantly affects the efficiency of CC-based evolutionary algorithms. In the paper, we

investigate the performance of the proposed algorithm with different mutation schemes and selection

operators.

Proportional selection. Every individual can become a parent with probability which is proportional

to its fitness value. In case of solving minimization problem, the probability of selecting an individual is

equal to:

𝑝* =
/#$%:/"

∑ </#$%:/&=
'('_*"+,
&-.

,

here 𝑓* is the value of the fitness function of i-th individual. 𝑓62! is the maximum value of fitness function

in the current generation in the population. This type of selection demonstrates low performance because

of fast convergence to a local optimum. This happens because the best individual after some generations

will quickly dominate the population.

Linear rank selection. This is mostly used selection strategy in population-based algorithms.

Individuals should be sorted according to their fitness values and get ranks using the following formula:

𝑟𝑎𝑛𝑘* = 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 − 𝑖, here 𝑟𝑎𝑛𝑘* is the rank of i-th individual. The selection probability linearly depends

on the value of rank.

Exponential rank selection. Another well-known selection is based on exponential distribution. The

rank of fitness values is calculated using the following formula:

https://doi.org/10.15405/epct.23021.25
Corresponding Author: Aleksei Vakhnin
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 205

𝑟𝑎𝑛𝑘* = 𝑒
/0"

'('_*"+,,

here k is a parameter of the selection.

The probability of selecting individuals using liner and exponential rank selections is equal to:

𝑝* =
12(4"

∑ <12(4&=
'('_*"+,
&-.

.

Tournament selection. It is another well-known selection in population-based algorithms. It is

needed to define the size of tournament (t), it should be 2 ≤ 𝑡 ≤ 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒. The operator of selection

randomly chooses t different individuals from the current population and selects the one who has the best

fitness function value.

5.3. Schemes of Mutation in DE

In the study, the following mutation schemes have been used:

§ DE/rand/1 – 𝑣8 = 𝑥1),8 + 𝐹=𝑥1?,8 − 𝑥1@,8?

§ DE/rand/2 – 𝑣8 = 𝑥1),8 + 𝐹=𝑥1?,8 − 𝑥1@,8? + 𝐹=𝑥1A,8 − 𝑥1B,8?

§ DE/best/1– 𝑣8 = 𝑥-,8 + 𝐹=𝑥1?,8 − 𝑥1@,8?

§ DE/best/2 – 𝑣8 = 𝑥-,8 + 𝐹=𝑥1?,8 − 𝑥1@,8? + 𝐹=𝑥1A,8 − 𝑥1B,8?

§ DE/current-to-rand/1 – 𝑣8 = 𝑥*,8 + 𝐹=𝑥1?,8 − 𝑥*,8? + 𝐹=𝑥1A,8 − 𝑥1B,8?

§ DE/current-to-best/1 – 𝑣8 = 𝑥*,8 + 𝐹=𝑥-,8 − 𝑥*,8? + 𝐹=𝑥1A,8 − 𝑥1B,8?

§ DE/current-to-pbest/1 – 𝑣8 = 𝑥*,8 + 𝐹=𝑥5-,8 − 𝑥*,8? + 𝐹=𝑥1A,8 − 𝑥1B,8?

However, random uniform distribution is almost always used to generate r1, r2, r3, r4, and r5

indexes. r1, r2, and r4 indexes are generated from the main population, r3 and r5 can be taken from the

main population and the archive.

Table 1. Pseudocode of CC-SHADE-ML
Line Pseudocode

1 Generate an initial population randomly;

2 Initialize performance vectors, CC_performance and pop_performance;

3 FEs_cycle_init = FEs_total/ cycles_number;

4 while (FEs>0) do

5 FEs_cycle = FEs_cycle_init;

6 Randomly shuffle indices;

7 Randomly select CC_size and pop_size from CC_performance and pop_performance;

8 while (FEs_cycle>0) do

9 Find the best fitness value before the optimization cycle f_best_before;

10 for i=1 to CC_size

11 Evaluate the i-th subcomponent using the SHADE algorithm;

12 end for

https://doi.org/10.15405/epct.23021.25
Corresponding Author: Aleksei Vakhnin
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 206

13 Find the best fitness value after the optimization cycle f_best_after;

14 Evaluate performance of CC_size and pop_size using eq. (2);

15 Update CC_performance and pop_performance;

16 end while

17 end while

18 Generate an initial population randomly;

6. Findings

In this section, experimental setup and results are presented. In the paper, the LSGO CEC’13

benchmark set, Li et al. (2013), has been used for evaluating the algorithm performance. Numerical

experiments have been conducted according to the conditions of the LSGO CEC’2013 competition. This

set consists of 15 continuous optimization problems. The number of variables of each problem is equal to

1000. The maximum number of fitness evaluations is 3.0E+06 in each independent run. The comparison of

algorithms is based on the mean values, which are obtained in 25 independent runs. Numerical experiments

have been performed on a computation cluster based on eight personal computers. The total number of

computational threads is 128.

The performance of CC-SHADE-ML has been evaluated. All combinations of mutation schemes

and selection operators have been compared between each other. The proposed CC-SHADE-ML algorithm

has the following parameters. The set of subcomponents is equal to {5,10,20,50}. The set of the population

size is equal to {25,50,100}. In SHADE, the size of the archive is 100. The number of cycles is set to 50.

According to our numerical experiments, this value for the number of cycles performs better than other

tested values. Thus, in each cycle, CC-SHADE-ML evaluates 6.0E+4 FEs.

Figure 1 presents how CC-SHADE-ML switches the number of subcomponents and the population

size during the optimization process in one independent run on F2 benchmark problem using current-to-

pbest/1 mutation scheme and tournament selection. The x-axis shows FEs, the y-axis shows the levels of

subcomponents and population size.

https://doi.org/10.15405/epct.23021.25
Corresponding Author: Aleksei Vakhnin
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 207

 The self-adaptation curves of the number of subcomponent (top) and the population size
(bottom) using CC-SHADE-ML algorithm on F2 benchmark problem

Figure 2 shows heat maps for each benchmark problem and each combination of mutation and

selection. The x-axis denotes the selection type, the y-axis denotes the mutation scheme. The performance

of each combination of mutation and selection is presented by rank. The biggest number corresponds to the

best average fitness value obtained in 25 independent runs. Dark blue (dark) and white color (light) colors

denote the best and worst combination, respectively. The rank distribution in heat maps depends on the

optimization problem.

Figure 3 shows the rank sum for the algorithm’s parameters for all benchmark problems (left) and

the sum of scores based on comparison using the Wilcoxon rank-sum test (left). The x-axis denotes the

selection type, the y-axis denotes the mutation scheme. The highest sum is the best achieved result. The

dark color denotes the worst on average combination of parameters. The results in the left picture are based

on the results from Figure 2. The results in the right picture are based on pairwise comparison corresponding

combinations with other combinations on all benchmark problems. If statistical significance is found

between two combinations on a problem, then add one score to the best-performed combination and remove

one score from the other.

https://doi.org/10.15405/epct.23021.25
Corresponding Author: Aleksei Vakhnin
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 208

 Ranking the CC-SHADE-ML algorithm with different mutation schemes and selection
strategies on each benchmark problem from LSGO CEC’2013

7. Conclusions

The paper proposes the CC-SHADE-ML algorithm for solving large-scale global optimization

problems. CC-SHADE-ML changes the number of subcomponents and the number of individuals based on

their performance. We have investigated the proposed metaheuristic using the LSGO CEC’13 benchmark

set with fifteen benchmark problems. Numerical experiments show that the best-performed mutation

scheme, on average, is the current-to-pbest/1, the best-performed selections are tournament and

proportionate selection. All experiments are proven by the Wilcoxon test. CC-SHADE-ML has a high

potential for enhancement. In our further works, we will improve the performance of the CC-SHADE-ML

algorithm by modifying the optimizer and tuning the parameters of selections. Also, we will test the use of

hybrid memetic metaheuristics for solving continuous large-scale global optimization problems.

 The ranks sum (left) and the sum of scores based of Wilcoxon test (right) of the CC-SHADE-
ML algorithm with different mutation schemes and selection strategies on each benchmark

problem from LSGO CEC’2013

https://doi.org/10.15405/epct.23021.25
Corresponding Author: Aleksei Vakhnin
Selection and peer-review under responsibility of the Organizing Committee of the conference
eISSN: 2672-8834

 209

Acknowledgments

This research was funded by the Ministry of Science and Higher Education of the Russian

Federation, Grant No. 075-15-2022-1121.

References

Dong, X., Yu, H., Ouyang, D., Cai, D., Ye, Y., & Zhang, Y. (2010). Cooperative coevolutionary genetic
algorithms to find optimal elimination orderings for bayesian networks. In 2010 IEEE fifth
international conference on bio-inspired computing: Theories and applications (BIC-TA) (pp. 1388-
1394). IEEE. https://doi.org/10.1109/BICTA.2010.5645605

Li, X., Tang, K., Omidvar, M. N., Yang, Z., & Qin, K. (2013). Benchmark functions for the CEC’2013
special session and competition on large scale global optimization. Technical Report, 1-23.

Mahdavi, S., Shiri, M. E., & Rahnamayan, S. (2015). Metaheuristics in large-scale global continues
optimization: A survey. Information Sciences, 295, 407-428.
https://doi.org/10.1016/j.ins.2014.10.042

Maniadakis, M., & Trahanias, P. (2005). A hierarchical coevolutionary method to support brain-lesion
modelling. Proceedings. 2005 IEEE International Joint Conference on Neural Networks (pp. 434-
439). https://doi.org/10.1109/ijcnn.2005.1555870

Omidvar, M. N., Li, X., Mei, Y., & Yao, X. (2014). Cooperative Co-Evolution with Differential Grouping
for Large Scale Optimization. IEEE Transactions on Evolutionary Computation, 18(3), 378-393.
https://doi.org/10.1109/tevc.2013.2281543

Potter, M. A., & Jong, K. A. (1994). A cooperative coevolutionary approach to function optimization.
Parallel Problem Solving from Nature — PPSN III, 666, 249-257. https://doi.org/10.1007/3-540-
58484-6_269

Tanabe, R., & Fukunaga, A. (2013). Success-history based parameter adaptation for differential evolution.
In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE.
https://doi.org/10.1109/cec.2013.6557555

Yang, Z., Tang, K., & Yao, X. (2007). Differential evolution for high-dimensional function optimization.
In 2007 IEEE congress on evolutionary computation (pp. 3523-3530). IEEE.
https://doi.org/10.1109/CEC.2007.4424929

Yang, Z., Tang, K., & Yao, X. (2008a). Large scale evolutionary optimization using cooperative
coevolution. Information Sciences, 178(15), 2985-2999. https://doi.org/10.1016/j.ins.2008.02.017

Yang, Z., Tang, K., & Yao, X. (2008b). Multilevel cooperative coevolution for large scale optimization. In
2008 IEEE congress on evolutionary computation (IEEE World Congress on Computational
Intelligence) (pp. 1663-1670). IEEE. https://doi.org/10.1109/CEC.2008.4631014

Zhan, Z.-H., Shi, L., Tan, K. C., & Zhang, J. (2022). A survey on evolutionary computation for complex
continuous optimization. Artificial Intelligence Review, 55(1), 59-110.
https://doi.org/10.1007/s10462-021-10042-y

