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Abstract 
 

Continuous large-scale global optimization (LSGO) is a challenging task for a wide range of state-of-the 
art metaheuristic algorithms. This is due to the curse of dimensionality because the size of the search space 
grows exponentially with the increasing the number of variables. Thus, metaheuristics lose efficiency in 
solving LSGO problems. For increasing the performance of metaheuristic algorithms in solving LSGO 
problems, cooperative coevolution (CC) is used. CC-based metaheuristics have two main control 
parameters, which are the population size and the type of variable grouping. In this paper, a novel self-
adaptive multilevel cooperative coevolution algorithm is proposed. The subcomponent optimizer of the 
proposed CC-based algorithm is SHADE. The proposed algorithm self-adapts the number of 
subcomponents and the population size during the optimization process. The complete title of the proposed 
algorithm is CC-SHADE-ML. We have evaluated the performance of the proposed algorithm on fifteen 
benchmark problems chosen from the LSGO CEC’2013 benchmark set. The performance of the CC-
SHADE-ML algorithm has been evaluated using well-known mutation strategies and selection operators. 
We can conclude that mutation and selection operators make a significant impact in the performance of 
DE-based metaheuristics. All numerical experiments are proven statistically.    
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1. Introduction 

Metaheuristics are successfully used in solving black-box optimization problems, see in Zhan et al. 

(2022). Potter and Jong (1994) have proposed cooperative coevolution (CC) framework, to increase the 

performance of the traditional genetic algorithm (GA) to solve continuous optimization problems. The core 

idea of CC is to divide an optimization problem into disjoint subcomponents and evolve them independently 

to each other. As authors noted, any optimizer (evolutionary algorithm) can be used to optimize 

subcomponents. This research work formed the basis for solving LSGO problems, see in Mahdavi et al. 

(2015). Later, it was found that CC is a good tool for solving large-scale global optimization (LSGO) 

problems. 

In the last two decades, many CC-based approaches have been applied to increase the performance 

of metaheuristics for solving real-world LSGO problems (Dong et al., 2010; Maniadakis & Trahanias, 

2005). There are three main CC branches depending on variable grouping type: static, random, and 

learning-based variable grouping. 

Static grouping, this type of variable grouping was proposed in the paper of Potter and Jong (1994) 

for the first time. The main idea is to set the fixed number of subcomponents and to define variables in 

these subcomponents. It is a preferable grouping if a relationship between variables is known. However, 

many real-world LSGO problems are presented by a black-box model. 

Random grouping, optimized variables can be placed in different subcomponents many times during 

the optimization process (Yang et al., 2008a). When a predefined number of fitness evaluation is reached 

or other termination conditions are fulfilled, an algorithm randomly mixes variables between 

subcomponents, also the number of subcomponents can be changed. The main idea of random grouping is 

to increase the probability that two or more non-separable variables will be in the same subcomponent. 

Learning grouping, this grouping is based on finding the original interaction between variables using 

special experiments (Omidvar et al., 2014). Usually, learning-based grouping approaches increment each 

variable of fitness function and to track changes. Based on the changes, variables are grouped in 

subcomponents. 

In practice, determining the true relationship between variables is a challenging task, because of 

unknown optimization problem properties. In static and random grouping, setting the arbitrary group size 

can lead to low performance of an algorithm. On the other hand, learning grouping needs quite a lot of 

function evaluations (FEs) to determine true connections between variables, and there is no guarantee that 

an EA will perform better using the discovered true connection between variables. Thereby, there is a need 

to develop a self-adaptive mechanism for the automatic selection of the number of subcomponents and the 

population size. 

The rest of the paper is organized as follows: section 2 proposes CC-SHADE-ML, contains 

description of selection operators and mutation schemes, section 3 contains experimental setup and results 

of numerical experiments. Section 4 concludes the paper. 

 

 

 



https://doi.org/10.15405/epct.23021.25 
Corresponding Author: Aleksei Vakhnin 
Selection and peer-review under responsibility of the Organizing Committee of the conference  
eISSN: 2672-8834 
 

 203 

2. Problem Statement 

An LSGO problem can be stated as a continuous optimization problem: 

𝑓(�̅�) → min
!̅∈$⊂&!

, 𝑓∗ = 𝑓(𝑥∗) ≤ 𝑓(�̅�), 𝑥 ∈ 𝐷 ⊂ 𝑅(, 

where 𝑓(�̅�) is an fitness function to be minimized, 𝑓: 𝑅( → 𝑅), �̅� is an n-dimensional vector of continuous 

variables, 𝐷 is the search space defined by box constrains 𝑥*+ ≤ 𝑥* ≤ 𝑥*,, 𝑖 = 1, 𝑛55555, 𝑥*+ and 𝑥*, are the lower 

and upper borders of the i-th variable, respectively, 𝑥∗ is a global optimum. It is assumed that the fitness 

function is continuous. 

3. Research Questions 

In course of the study the following questions were raised: 

§ What is the role of cooperative coevolution approach in solving LSGO problems? 

§ What is the role of selection operators in CC-based evolutionary algorithms in solving LSGO 

problems? 

§ What is the role of mutation schemes in CC-based evolutionary algorithms in solving LSGO 

problems? 

4. Purpose of the Study 

The answers to the issues raised above will help achieve the goal and contribute to the development 

of recommendations on parameters selection in CC-based evolutionary algorithms for solving LSGO 

problems. 

5. Research Methods 

5.1. CC-SHADE-ML 

This section gives the description of the proposed algorithm in detail. The algorithm combines 

cooperative coevolution, the multilevel self-adaptive approach for selecting the number of subcomponents 

and the number of individuals, and SHADE, proposed by Tanabe and Fukunaga (2013), and it is titled as 

CC-SHADE-ML. An original idea of using a multilevel approach is proposed in the MLCC algorithm, 

proposed by Yang et al. (2008b). Before the main cycle of the optimization process, it is needed to define 

a set of integer values, each value is a level of the algorithm with a unique number of subcomponents. The 

optimization process is divided into a predefined number of cycles. In each cycle, the number of 

subcomponents is selected according to the performance of a decomposition in the previous cycles. In each 

cycle, variables are divided in subcomponents randomly. To evaluate the performance of each level, we 

use the following formula: 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒* = =𝑓*
-./01. − 𝑓*

2/3.1?/𝑓*
-./01., 
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here 𝑓*
-./01. and 𝑓*

2/3.1 the best-found fitness values before and after the optimization cycle in the i-th 

level. If 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒* is equal to a value which is less than 1E-4, then it is set to 1E-4. In the beginning 

of the optimization process, all values of 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒* are set to 1.0. The selection probability of each 

level is calculated using the following formula: 

𝑝* =
𝑒4∗5.1/0162(7."

∑ 𝑒4∗5.1/0162(7."3
89)

, 𝑖 = {1,2, … , 𝑡}, 

here, k is a control parameter and it was set to 7 according to our numerical experiments. Also, authors of 

MLCC have noted that in their case, when k equals to 7, MLCC shows better performance. In each new 

optimization cycle, it is needed to recalculate the performance of the last applied level and to select a new 

level based on new probabilities. In this study, the number of cycles was set to 50. SaNSDE, proposed by 

Yang et al. (2007), is used in MLCC as optimizers and has the fixed population size. The population size, 

in population-based searching algorithms, is one the most important parameter. The proposed algorithm 

uses the same idea in selection the number of individuals as MLCC uses in selection the number of 

subcomponents. 

The proposed CC-SHADE-ML algorithm differs from MLCC in the following. It uses SHADE 

instead of SaNSDE and extends MLCC by applying a self-adaptation multilevel (ML) approach for the 

population size. The pseudo-code of CC-SHADE-ML is presented in Table 1. 

5.2. Operators of Selection in DE 

In addition to the population size and the number of subcomponents, the type of mutation and 

selection also significantly affects the efficiency of CC-based evolutionary algorithms. In the paper, we 

investigate the performance of the proposed algorithm with different mutation schemes and selection 

operators. 

Proportional selection. Every individual can become a parent with probability which is proportional 

to its fitness value. In case of solving minimization problem, the probability of selecting an individual is 

equal to: 

𝑝* =
/#$%:/"

∑ </#$%:/&=
'('_*"+,
&-.

, 

here 𝑓* is the value of the fitness function of i-th individual. 𝑓62! is the maximum value of fitness function 

in the current generation in the population. This type of selection demonstrates low performance because 

of fast convergence to a local optimum. This happens because the best individual after some generations 

will quickly dominate the population. 

Linear rank selection. This is mostly used selection strategy in population-based algorithms. 

Individuals should be sorted according to their fitness values and get ranks using the following formula: 

𝑟𝑎𝑛𝑘* = 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 − 𝑖, here 𝑟𝑎𝑛𝑘* is the rank of i-th individual. The selection probability linearly depends 

on the value of rank. 

Exponential rank selection. Another well-known selection is based on exponential distribution. The 

rank of fitness values is calculated using the following formula: 
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𝑟𝑎𝑛𝑘* = 𝑒
/0"

'('_*"+,, 

here k is a parameter of the selection. 

The probability of selecting individuals using liner and exponential rank selections is equal to: 

𝑝* =
12(4"

∑ <12(4&=
'('_*"+,
&-.

. 

Tournament selection. It is another well-known selection in population-based algorithms. It is 

needed to define the size of tournament (t), it should be 2 ≤ 𝑡 ≤ 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒. The operator of selection 

randomly chooses t different individuals from the current population and selects the one who has the best 

fitness function value. 

5.3. Schemes of Mutation in DE 

In the study, the following mutation schemes have been used: 

§ DE/rand/1 – 𝑣8 = 𝑥1),8 + 𝐹=𝑥1?,8 − 𝑥1@,8? 

§ DE/rand/2 – 𝑣8 = 𝑥1),8 + 𝐹=𝑥1?,8 − 𝑥1@,8? + 𝐹=𝑥1A,8 − 𝑥1B,8? 

§ DE/best/1– 𝑣8 = 𝑥-,8 + 𝐹=𝑥1?,8 − 𝑥1@,8? 

§ DE/best/2 – 𝑣8 = 𝑥-,8 + 𝐹=𝑥1?,8 − 𝑥1@,8? + 𝐹=𝑥1A,8 − 𝑥1B,8? 

§ DE/current-to-rand/1 – 𝑣8 = 𝑥*,8 + 𝐹=𝑥1?,8 − 𝑥*,8? + 𝐹=𝑥1A,8 − 𝑥1B,8? 

§ DE/current-to-best/1 – 𝑣8 = 𝑥*,8 + 𝐹=𝑥-,8 − 𝑥*,8? + 𝐹=𝑥1A,8 − 𝑥1B,8? 

§ DE/current-to-pbest/1 – 𝑣8 = 𝑥*,8 + 𝐹=𝑥5-,8 − 𝑥*,8? + 𝐹=𝑥1A,8 − 𝑥1B,8? 

However, random uniform distribution is almost always used to generate r1, r2, r3, r4, and r5 

indexes. r1, r2, and r4 indexes are generated from the main population, r3 and r5 can be taken from the 

main population and the archive. 

Table 1.  Pseudocode of CC-SHADE-ML 
Line Pseudocode 

1 Generate an initial population randomly; 

2 Initialize performance vectors, CC_performance and pop_performance; 

3 FEs_cycle_init = FEs_total/ cycles_number; 

4 while (FEs>0) do 

5  FEs_cycle = FEs_cycle_init; 

6  Randomly shuffle indices; 

7  Randomly select CC_size and pop_size from CC_performance and pop_performance; 

8  while (FEs_cycle>0) do 

9  Find the best fitness value before the optimization cycle f_best_before; 

10   for i=1 to CC_size 

11    Evaluate the i-th subcomponent using the SHADE algorithm; 

12   end for 
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13   Find the best fitness value after the optimization cycle f_best_after; 

14   Evaluate performance of CC_size and pop_size using eq. (2); 

15   Update CC_performance and pop_performance; 

16  end while 

17 end while 

18 Generate an initial population randomly; 

 

6. Findings 

In this section, experimental setup and results are presented. In the paper, the LSGO CEC’13 

benchmark set, Li et al. (2013), has been used for evaluating the algorithm performance. Numerical 

experiments have been conducted according to the conditions of the LSGO CEC’2013 competition. This 

set consists of 15 continuous optimization problems. The number of variables of each problem is equal to 

1000. The maximum number of fitness evaluations is 3.0E+06 in each independent run. The comparison of 

algorithms is based on the mean values, which are obtained in 25 independent runs. Numerical experiments 

have been performed on a computation cluster based on eight personal computers. The total number of 

computational threads is 128. 

The performance of CC-SHADE-ML has been evaluated. All combinations of mutation schemes 

and selection operators have been compared between each other. The proposed CC-SHADE-ML algorithm 

has the following parameters. The set of subcomponents is equal to {5,10,20,50}. The set of the population 

size is equal to {25,50,100}. In SHADE, the size of the archive is 100. The number of cycles is set to 50. 

According to our numerical experiments, this value for the number of cycles performs better than other 

tested values. Thus, in each cycle, CC-SHADE-ML evaluates 6.0E+4 FEs. 

Figure 1 presents how CC-SHADE-ML switches the number of subcomponents and the population 

size during the optimization process in one independent run on F2 benchmark problem using current-to-

pbest/1 mutation scheme and tournament selection. The x-axis shows FEs, the y-axis shows the levels of 

subcomponents and population size. 
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 The self-adaptation curves of the number of subcomponent (top) and the population size 
(bottom) using CC-SHADE-ML algorithm on F2 benchmark problem 

Figure 2 shows heat maps for each benchmark problem and each combination of mutation and 

selection. The x-axis denotes the selection type, the y-axis denotes the mutation scheme. The performance 

of each combination of mutation and selection is presented by rank. The biggest number corresponds to the 

best average fitness value obtained in 25 independent runs. Dark blue (dark) and white color (light) colors 

denote the best and worst combination, respectively. The rank distribution in heat maps depends on the 

optimization problem. 

Figure 3 shows the rank sum for the algorithm’s parameters for all benchmark problems (left) and 

the sum of scores based on comparison using the Wilcoxon rank-sum test (left). The x-axis denotes the 

selection type, the y-axis denotes the mutation scheme. The highest sum is the best achieved result. The 

dark color denotes the worst on average combination of parameters. The results in the left picture are based 

on the results from Figure 2. The results in the right picture are based on pairwise comparison corresponding 

combinations with other combinations on all benchmark problems. If statistical significance is found 

between two combinations on a problem, then add one score to the best-performed combination and remove 

one score from the other. 
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 Ranking the CC-SHADE-ML algorithm with different mutation schemes and selection 
strategies on each benchmark problem from LSGO CEC’2013 

 

7. Conclusions 

The paper proposes the CC-SHADE-ML algorithm for solving large-scale global optimization 

problems. CC-SHADE-ML changes the number of subcomponents and the number of individuals based on 

their performance. We have investigated the proposed metaheuristic using the LSGO CEC’13 benchmark 

set with fifteen benchmark problems. Numerical experiments show that the best-performed mutation 

scheme, on average, is the current-to-pbest/1, the best-performed selections are tournament and 

proportionate selection. All experiments are proven by the Wilcoxon test. CC-SHADE-ML has a high 

potential for enhancement. In our further works, we will improve the performance of the CC-SHADE-ML 

algorithm by modifying the optimizer and tuning the parameters of selections. Also, we will test the use of 

hybrid memetic metaheuristics for solving continuous large-scale global optimization problems. 

 

 

 The ranks sum (left) and the sum of scores based of Wilcoxon test (right) of the CC-SHADE-
ML algorithm with different mutation schemes and selection strategies on each benchmark 

problem from LSGO CEC’2013 
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