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Abstract 
 

The paper is devoted to the study of the influence of class imbalance on the quality of hydrocracking unit 
failure prediction models. The use of machine learning methods finds an increasing response in various 
industries due to the increase in computing power and the reduction in the cost of creating advanced process 
control systems. The oil and gas industry are highly profitable and large in terms of its industrial capacity; 
thousands of pieces of technical equipment within one enterprise are involved in the production of 
petroleum products and their processing. Therefore, improving the operational reliability of oil refining 
process equipment is an urgent scientific task. In this paper, we consider a method for modeling a 
hydrocracking unit for the production of diesel fuels and creating models for predicting plant equipment 
failures. Particular attention is paid to the influence of class imbalance in data when solving the 
classification problem. The built-in weighting methods for classes of machine learning models are 
compared, as well as upsampling and downsampling methods.    
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1. Introduction 

Technological installations and oil refineries are designed to implement the processing of 

hydrocarbon raw materials into marketable products or semi-finished products for further conversion. The 

elements of this technological system include not only the main  equipment (columns, reactors, 

technological pipelines, tanks, pumping and compressor equipment, etc.), but also technological equipment 

(power supply equipment, instrumentation systems, water supply and sewage and etc.).The number of 

elements of an oil refinery process unit that can to some extent affect the occurrence and development of 

an emergency, depending on the complexity of the installation, can reach from several hundred to 

thousands. In this regard, the analysis of the reliability of such technological systems is a rather complicated 

task, requiring knowledge of the technology, the features of the system elements and their interconnection. 

At present, for complex technical systems of the aviation and space industries, nuclear power engineering, 

the reliability analysis methodology has been developed and tested quite widely (Barabady & Kumar, 2008; 

Jun & Huibin, 2012; Meng et al., 2019) 

The most promising are the methods based on the predictive approach - the methods of predicting 

failures. Recently, the use of machine learning models for analyzing large amounts of data, searching for 

statistical patterns and predicting equipment parameters or the state of the system as a whole has been in 

great demand (Jin et al., 2021; Salfner et al., 2010; Zhang et al., 2016). 

Also relevant is the issue of reducing harmful emissions and reducing the carbon footprint from 

human activities. A lot of research is currently being done on the production of biofuels. Components for 

the production of biofuel compositions - biodiesel are produced using a hydrocracking unit (Al-Muttaqii et 

al., 2019; Hasanudin et al., 2022; Srihanun et al., 2020) 

2. Problem Statement 

The research problem is the insufficient reliability of the process equipment of the oil refining 

industry. 

3. Research Questions 

For this, the following questions need to be considered: 

§ Conduct a simulation of a hydrocracking unit. 

§ Simulate various installation scenarios. 

§ Obtain data on equipment failures during operation of the hydrocracking unit. 

§ Build failure prediction models using machine learning methods. 

§ Consider the impact of class imbalance when solving the classification problem 

§ Compare the performance of different machine learning models 
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4. Purpose of the Study 

The purpose of the work is to study the effect of class imbalance when creating machine learning 

classification models for predicting failures of hydrocracking process equipment. 

5. Research Methods 

5.1. Simulation of the hydrocracking process 

To create a unit model based on the flow chart of hydrocracking, we use the Aspen Hysys program. 

The basic technological scheme of the hydrocracking unit contains 3 main blocks: a reactor block, a 

separation block and a rectification block (Nakamanuruck et al., 2017). 

5.2. Preparation, processing of data and creation of models 

Simulation of 1000 installation scenarios will be carried out using the built-in scenario manager 

Aspen Simulation Workbook (Nekrasov et al., 2021). 

Data processing, dataset creation is carried out in the Python programming language. To create 

forecasting models, we use the scikit-learn library (Nekrasov et al., 2022). 

5.3. Metrics for evaluating the quality of models 

To assess the quality of models, we use the indicators accuracy, precision, recall and F-score. 

Based on the prediction results, you can get a matrix of model classification confusions (Table 1). 

 

Table 1.  Confusion matrix 
 y = 1 y = 0 

ỹ = 1 True Positive (TP) False Positive (FP) 
ỹ = 0 False Negative (FN) True Negative (TN) 

y – true class label on this object, ỹ - algorithm prediction 

 

Thus, there are two types of classification errors: false negatives (FN) and false positives (FP). 

Accuracy - proportion of correct answers of the algorithm. Precision can be interpreted as the 

proportion of objects that are called positive by the classifier and are actually positive. Recall - shows what 

proportion of objects of a positive class out of all objects of a positive class was found by the algorithm: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 								𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 						𝑅𝑒𝑐𝑎𝑙𝑙	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

The F-score is the harmonic mean between precision and recall. It tends to zero if precision or recall 

tends to zero. AUC ROC - area under the curve receiver operating characteristic. This curve is a line from 

(0;0) to (1;1) in True Positive Rate (TPR) and False Positive Rate (FPR) coordinates: 

𝐹1	 = 	
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 											𝑇𝑃𝑅 =	

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 										𝐹𝑃𝑅 =	

𝐹𝑃
𝐹𝑃 + 𝑇𝑁			 
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5.4. Class imbalance 

If the classes are unbalanced - a multiple excess of the number of output values of one class over 

another, this can affect the efficiency of the model. 

To offset this influence, we use the methods of downsampling and upsampling. 

§ Downsampling - reducing the number of rows of the highest class by removing data to obtain a 

balance of classes. 

§ Upsampling - copying rows with data of a smaller class to get a balance.  

§ Also, some classification models have a built-in "class weight" hyperparameter, so let's 

consider the effectiveness of its application. 

6. Findings 

6.1. Hydrocracking unit model 

The following model of the hydrocracking unit was obtained (Figure 1). 

 

 

 Hydrocracking unit model 

6.2. Dataset 

The key parameters were determined, 8 input parameters - technological parameters of input flows, 

pressure and volume flow at the inlet to the reactor block and 1 output - the state of the system, the presence 

or absence of a failure. The dataset contains 1000 rows. 

6.3. Models 

Before training the model, the data were scaled, and normalized. Additional noise was applied to 

the data after generation in order to simulate possible data distortions in reality and to avoid overfitting the 

models on perfect data. The dataset is divided into training, test and validation samples in the ratio of 

60:20:20. Models were created based on the decision tree, random forest, logistic regression and Gaussian 

Bayesian algorithms. For each model, the best set of hyperparameters was selected using the GridSearchСV 

algorithm. The number of model training sessions conducted varies from tens to several thousand, 
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depending on the number of hyperparameters iterated (f. e. 2 hyperparameters for logistic regression and 5 

hyperparameters for random forest). The evaluation indicators of the best models are presented in Table 2. 

 

Table 2.  Models evaluation metrics 

Metrics Decision tree Random Forest Logistic regression Gaussian 
Bayesian 

Accuracy 0.862 0.866 0.784 0.777 
Precision 0.774 0.783 0.478 0.397 

Recall 0.508 0.520 0.05 0.067 
F-score 0.613 0.625 0.09 0.115 

AUC-ROC 0.842 0.844 0.683 0.755 

 

Figure 2 shows the roc-curves of the models: 

 

 

 ROC-curve of basic models 

The random forest model showed the best result with the following set of hyperparameters: 

max_depth = 7; max_features = ‘sqrt’; min_samples_leaf = 3; min_samples_split = 7; n_estimators = 153. 

6.4. Class imbalance 

Ratio of model classes is 911 to 89. For alignment, you need to increase the number of class 1 values 

or decrease the class 0 values by a factor of 10. To do this, delete the rows or multiply the missing ones and 

then shuffle the data using the shuffle method. We also use the built-in model hyperparameter, where 

possible, class_weight = 'balanced'. 

The metrics of the transformed models are presented in Table 3. 
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Table 3.  Balanced model’s evaluation metrics 

F-score for Decision tree Random Forest Logistic regression Gaussian 
Bayesian 

Balanced 0.569 0.601 0.513 - 
Downsampled 0.575 0.605 0.475 0.501 

Upsampled 0.569 0.635 0.478 0.507 
Upsampled  
AUC-ROC 0.824 0.852 0.729 0.755 

 

The F-measure fell for the decision tree and random forest, but increased significantly for the logistic 

regression. Gaussian Bayesian model has no model weight setting option. The logistic regression and 

Gaussian downsampled model model scores increased. The decision tree and random forest performed 

worse. F-measure improved for random forest, logistic regression, and Gaussian upsampled model 

compared to imbalanced data. The best F-measure model was a random forest with training data where 

class 1 was increased (Figure 3) 

 

 

 ROC-Curve of balanced random forest models 

The imbalance affected the models for the worse. The best solution was to increase classes 1 in the 

training sample. The alignment of classes in the sample led to a sharp increase in the recall parameter and 

a slight decrease in precision. But in general, the F-score has grown. 

7. Conclusion 

According to the results of the work, a model of a hydrocracking unit in Aspen Hysys was created. 

Scenarios of operation and failures of the installation have been worked out, a dataset has been created 

based on these data Training of classification models based on decision tree, random forest, logistic 
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regression, Gaussian-Bayesian algorithms. The influence of class imbalance on the quality of model 

forecasting was studied. 

Class weighting improves the performance of models. Precision is falling, recall is growing, but in 

general, the F-score has a small increase. The balance of classes increases the coverage of the required data. 

Assessing the adequacy of the model, it can be noted that the AUC-ROC of the unbalanced model and the 

weighted model approximately equally predict the class of the plant state. As a result of the study, a model 

was obtained with the best performance both in terms of F-score and AUC-ROC - Random forest: balanced 

by grow 1 class. Model F-score increased from 0.625 to 0.635, AUC-ROC from 0.844 to 0.852. 
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