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Abstract 
 

Determining the step length in iterations of nonlinear minimization represents a problem that is not uniquely 
defined. Motivated by such uncertainty in defining step length, our intention was to use the capabilities of 
neutrosophy in this process. Our idea is to unify the usability and numerous applications of neutrosophic 
logic and the enormous importance of nonlinear optimization. An improvement of line search iteration for 
solving unconstrained optimization is proposed using appropriately defined Neutrosophic logic system in 
determining appropriate step size for the class of descent direction methods. The basic idea is to use an 
additional parameter that would monitor the behavior of the objective function and, based on that, correct 
the step length in known optimization methods. Mutual comparison and analysis of generated numerical 
results reveal better results generated by the suggested iterations compared to analogous available iterations 
considering the statistical ranking technique. Statistical measures show advantages of fuzzy improvements 
of considered line search optimization methods.    
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1. Introduction 

Let 𝒰 denote the universe of discourse and assume 𝒩 ⊆ 𝒰. The fuzzy set theory is based on the use 

of a membership function 𝑇(𝑢) ∈ [0,1], 𝑢 ∈ 𝒰 (Zadeh, 1965). A fuzzy set 𝒩 in 𝒰 is a set of ordered pairs 

𝒩 = {〈𝑢, 𝑇(𝑢)〉|		𝑢 ∈ 𝒰}. 

Apart from the membership function 𝑇(𝑢), an intuitionistic fuzzy set (IFS) also uses the opposite 

non-membership function 𝐹(𝑢) ∈ [0,1], 𝑢 ∈ 𝒰 (Atanassov, 1986). More precisely, an IFS 𝒩 in 𝒰 is 

defined as 𝒩 = {〈𝑢, 𝑇(𝑢), 𝐹(𝑢)〉|		𝑢 ∈ 𝒰}. 

Smarandache (2003) and Wang et al. (2010) extended the IFS theory by initiating the indeterminacy-

membership function, which represents indecisiveness in decision-making. Consequently, each element of 

a set in the neutrosophic set theory is defined by three independent membership functions (Smarandache, 

2003; Wang et al., 2010): the truth-membership function 𝑇(𝑥), the indeterminacy-membership function 

𝐼(𝑢), and the falsity-membership 𝐹(𝑢) function. A single valued neutrosophic set (SVNS) 𝒩 over 𝒰 is the 

set of neutrosophic numbers of the form 𝒩 = {〈𝑢, 𝑇(𝑢), 𝐼(𝑢), 𝐹(𝑢)〉|		𝑢 ∈ 𝒰}, Values of these functions 

are independent and inside [0,1], which means 𝑇, 𝐼, 𝐹:𝒰 → [0,1] and 0 ≤ 𝑇(𝑢) + 𝐼(𝑢) + 𝐹(𝑢) ≤ 3. 

Fuzzy logic (FL), intuitionistic fuzzy logic (IFL) and Neutrosophic logic (NL) appear as efficient 

tools to handle mathematical models with uncertainty, fuzziness, ambiguity, inaccuracy, incomplete 

certainty, incompleteness, inconsistency, redundancy. 

Neutrosophic sets (NS) have important applications for denoising, clustering, segmentation, and 

classification in numerous medical image-processing applications. A utilization of neutrosophic theory in 

denoising medical images and their segmentation was proposed in (Guo et al., 2009), such that a 

neutrosophic image is characterized by three membership sets. Several applications of of neutrosophic 

systems were described in (Christianto & Smarandache, 2019). An application of neutrosophy in natural 

language processing and sentiment analysis was investigated in (Mishra et al., 2020). 

Our goal in the present paper is to unify possibilities of neutrosophy and several fradient-descent 

methods for solving unconstrained optimization problems. 

2. Problem Statement 

Our idea must be seen from two sides. First, we are guided by the huge popularity and numerous 

applications of NL. The other side of our problem is the ubiquitous optimization with a primordial desire 

to make the phenomenon or process the best possible. A combination of these two areas initiates 

applications of the Neutrosophic logic in determining an additional step size in main methods for solving 

the multivariate unconstrained optimization problem  

 min𝑓(𝐱),				𝐱 ∈ 𝑅!,     (1) 

with the objective 𝑓: 𝑅! → 𝑅. 

The descent direction (DD) iterative flow is defined by  

 𝐱"#$ = 𝐱" + ℓ"𝐝" ,     (2) 

in which 𝐱"#$ is the new approximation, 𝐱" is the former approximation, ℓ" > 0 is a step size, and 𝐝" is 

an appropriate search direction. The vector 𝐝" must satisfy the so called descent condition 𝐠"%𝐝" < 0, 
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assuming that 𝐠" = ∇𝑓(𝐱") is the gradient vector of 𝑓 in the point 𝐱". The choice of the anti-gradient 

direction 𝐝" = −𝐠" leads to the gradient descent (GD) iterations  

 𝐱"#$ = 𝐱" − ℓ"𝐠" .     (3) 

The general quasi-Newton (QN) class of iterations with line search  

 𝐱"#$ = 𝐱" − ℓ"𝐻"	𝐠"     (4) 

utilizes an appropriate symmetric and positive-definite estimation 𝐵" of the Hessian 𝐺" =�& 𝑓(𝐱") and 

then defines 𝐻": = 𝐵"'$ k (Sun and Yuan, 2006). The upgrade 𝐵"#$ from 𝐵" is established on the QN 

characteristic  

 𝐵"#$𝛒" = 𝜎" ,						𝜌" = 𝐱"#$ − 𝐱" ,				𝜎" = 𝐠"#$ − 𝐠" .    (5) 

We will consider the scalar Hessian approximation (Nocedal and Wright, 1999): 

𝐵" = 𝛾"𝐼,				𝛾" > 0,      (6) 

where 𝐼 is the identity matrix. Consequently, iterations under detailed consideration in this paper are given 

as  

 𝐱"#$ = 𝐱" − 𝛾"'$ℓ"𝐠"     (7) 

and are known as  improved gradient descent (IGD) iterations. The quantity ℓ" is defined as the output of 

an inexact line search, while 𝛾" is calculated based on Taylor series of 𝑓(𝐱). 

Diverse forms and improvements of the IGD iterative scheme (7) were suggested in (Petrović et al., 

2018; Stanimirović & Miladinović, 2010). The SM iterative flow is originated in (Stanimirović & 

Miladinović, 2010) and determined by the recurrence rule  

 𝐱"#$ = 𝐱" − ℓ"(𝛾"())'$𝐠" ,    (8) 

where 𝛾"() > 0 is the gain parameter determined utilizing the Taylor approximation of 𝑓(𝐱" −

ℓ"(𝛾"())'$𝐠"), as  

𝛾"#$() = ⅁S2𝛾"()
𝛾"()[𝑓"#$ − 𝑓"] + ℓ" ∥ 𝐠" ∥&

ℓ"& ∥ 𝐠" ∥&
V, 

such that 𝑓": = 𝑓(𝐱"), 𝑓"#$: = 𝑓(𝐱"#$) and  

⅁(𝜍) = X𝜍, 𝜍 > 0
1, 𝜍 ≤ 0. 

The following modification of the SM method was defined in (Ivanov et al., 2021) as the 

transformation 𝑀𝑆𝑀 =ℳ(𝑆𝑀) defined by  

 𝐱"#$ =ℳ(𝑆𝑀)(𝔵") = 𝐱" − 𝜏"(𝛾")())'$𝐠" ,   (9) 

where ℓ" ∈ (0,1) is the output of the line search, 𝜏" = ℓ" + ℓ"& − ℓ"*  and  

 𝛾"#$)() = ⅁X2𝛾")()
+!
"#"[-!$%'-!]#/!∥𝐠!∥&

/!
&∥𝐠!∥&

^.    (10) 

We propose improvements of surveyed line search iterative rules defined on the pattern (2) for 

solving (1). The principal idea is based on the utilization of an appropriate NLS in determining appropriate 
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step length for various gradient descent rules. Fuzzy descent direction (FDD) iterations are defined as a 

modification of the DD iterations (2), as follows  

 𝐱"#$ = ℱ(𝐷𝐷)(𝐱") = 𝐱" + Ϝ"ℓ"𝐝" ,    (11) 

where Ϝ" is appropriately defined adaptive Neutrosophic logic parameter. The set of desirable values of Ϝ" 

is defined upon the general restrictions  

 Ϝ" b
< 1, 𝑖𝑓		𝑓"#$ > 𝑓" ,
= 1, 𝑖𝑓		𝑓"#$ = 𝑓" ,
> 1, 𝑖𝑓		𝑓"#$ < 𝑓" .

     (12) 

The second approach is based on  

 Ϝ" X
< 1, 𝑖𝑓		𝑓"#$ > 𝑓" ,
= 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.      (13) 

Both approaches reduce the step length if the objective function increases. The difference is that the 

first approach tends to increase the step size in the case where the objective function is decreasing, while 

the second approach leaves such cases to the original model. We will use the restrictions (12) in numerical 

comparisons. 

The parameter Ϝ" will be determined using appropriately developed Neutrosophic logic controller 

(NLC). To our knowledge, such an research strategy has not been exploited so far. 

3. Research Questions 

Our exploratory research concerns the problem of determining the step length in (2). It is a known 

fact that the optimal step length determined on the basis of one-dimensional optimization is not an efficient 

solution in (Nocedal & Wright, 1999; Sun & Yuan, 2006). The problem of determining the step length is 

solved by the ILS procedure, which is guided by the basic principle that an appropriate step size initiates a 

substantial decrease in the value of the objective. Therefore, in this space of uncertainty, the possibility 

always remains open for additional improvements in the step size selection. eventually,there is no general 

rule to predict ℓ" in each iteration of each individual method. 

A neutrosophic logic system (NLS) is helpful in such situations that certainly cannot be predicted 

nor determined. Motivated by such a situation, we are sure that an NLS developed in a proper way is a 

suitable tool to define an additional gain parameter Ϝ" dynamically on the basis of previous results of the 

objective 𝑓. The basic dilemma is how to determine the value Ϝ" as an output of appropriately defined NLS 

in each iterative stage of the flow (11), such that the final searching step Ϝ"ℓ" forces more rapid decreases 

of the objective 𝑓. Our goal is to investigate some possibilities for defining proper NLS, define an additional 

parameter in main IGD methods and compare their effectiveness with respect to original methods. 

4. Purpose of the Study 

An NL is a better choice than the FL and IFL in representation of real world data and their executions 

because of several reasons, as follows. 
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a) FL and IFL systems neglect the importance of indeterminacy. A fuzzy logic controller (FLC) is 

based on membership and non-membership of a particular element to a particular set and take 

into account indeterminate nature of generated data. 

b) An FL or IFL system are further constrained by the fact that the sum of membership and 

nonmembership values is limited to 1. More details are available in (Smarandache, 2016). 

c) NL reasoning clearly distinguishes concepts of absolute truth and relative truth assuming the 

existence of the absolute truth with assigned value 1#. 

We originate and investigate a correlation between possibilities of NLSs and main methods available 

in nonlinear optimization. To be more precise, we will show that the learning rate parameter ℓ" can be 

supported during iterative process using an appropriate value Ϝ which is determined as the output of 

appropriately defined NLS that involves appropriately determined membership functions 𝑇, 𝐼, 𝐹. 

5. Research Methods 

The first research method is a rigorous convergence analysis based on mathematical analysis. 

The second research method assumes numerical testing and comparison of obtained numerical data. 

Test problems in ten dimensions [100,500,1000,3000,5000,7000,8000,10000,15000,20000] are 

evaluated and average values are used. The Codes Are Tested In Matlab R2017A. 

The third method comprises comparison based on the statistical ranking of the proposed 

optimization methods against corresponding known methods. 

6. Findings 

In this section we define three NLC-based optimization methods and describe the principles of the 

NLS used in defining the parameter Ϝ". 

6.1. NLC-based optimization methods 

Fuzzy GD method (FGD) is determined by the iterative sequence  

 𝐱"#$ = ℱ(𝐺𝐷)(𝐱") = ℱ(𝑥" − ℓ"	𝐠") = 𝐱" − Ϝ"ℓ"𝐠" . (14) 

Fuzzy SM method (FSM) is defined as  

 𝐱"#$ = ℱ(𝑆𝑀)(𝐱") = 𝑥" − Ϝ"ℓ"(𝛾"2())'$𝐠" , (15) 

where  

 𝛾"#$2() = ⅁X2𝛾"2()
+!
'#"[-!$%'-!]#Ϝ!ℓ!∥𝐠!∥&

(Ϝ!ℓ!)&∥𝐠!∥&
^.      (16) 

The Fuzzy MSM method (FMSM) is defined by  

 𝐱"#$ = ℱ(𝑀𝑆𝑀)(𝐱") = 𝐱" − Ϝ"𝜏"(𝛾"2)())'$𝐠" , (17) 

where  

𝛾"#$2)() = ⅁X2𝛾"2)()
+!
'"#"[-!$%'-!]#Ϝ!/!∥𝐠!∥&

(Ϝ!/!)&∥𝐠!∥&
^.                                  (18) 
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The overall structure of optimization methods defined on the usage of NLS follows the philosophy 

described in the diagram of Figure 1. 

 

 The general structure of the fuzzy optimization methods 

6.2. Neutrosophic logic system 

To define the FMSM method, we need to define the steps Score function, Neutrosophistication and 

De-Neutrosophistication.  

1.  Neutrosophication. Using three membership functions, neutrosophic logic maps the input Ⅎ": =

𝑓"#$ − 𝑓" into neutrosophic triplets 〈𝑇(Ⅎ"), 𝐼(Ⅎ"), 𝐹(Ⅎ")〉. There are a huge number of convenient 

membership functions that can be used. Our empirical experience based on a large number of numerical 

tests led us to the following choice. 

The truth-membership function is defined as the sigmoid function:  

 T(ϑ) = 1/(1 + e'7%(8'7&)).    (19) 

The parameter 𝑐$ is responsible for its slope at the crossover point 𝜗 = 𝑐&. The falsity-membership 

function is the sigmoid function:  

 F(ϑ) = 1/(1 + e7%(8'7&)).     (20) 

The indeterminacy-membership function is the Gaussian function:  

 I(ϑ) = e
'()*+&)

&

&+%
& ,      (21) 

where the parameter 𝑐$ signifies the standard deviation, and 𝑐& denotes the mean. In general, the 

neutrosophication of the crisp value 𝜗 ∈ ℝ is its transformation into 〈𝜗: 𝑇(𝜗), 𝐼(𝜗), 𝐹(𝜗)〉, where the 

membership functions are defined in (19), (20) and (21). 

Since the final goal is to minimize 𝑓(𝑥), it is a straightforward decision to use Ⅎ": = 𝑓(𝑥"#$) −

𝑓(𝑥") as a measure in the developed NLC. 

2.  Neutrosophic inference engine: The neutrosophic rule between the input fuzzy set ℑ and the 

output fuzzy set under the neutrosophic format 𝔒 = {𝑇, 𝐼, 𝐹} is described by the following "IF-THEN" 

rules:  

𝑅$: If	ℑ = 𝑃	then	𝔒 = {𝑇, 𝐼, 𝐹}𝑅&: If	ℑ = 𝑁	then	𝔒 = {𝑇, 𝐼, 𝐹}. 

The notations 𝑃 and 𝑁 stand for fuzzy sets, and indicate a positive and negative error, respectively. 
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3.  De-neutrosophication. This step applies conversion 〈𝑇(Ⅎ"), 𝐼(Ⅎ"), 𝐹(Ⅎ")〉 → Ϝ"(Ⅎ") ∈ ℝ 

resulting into a crisp real quantity Ϝ"(Ⅎ"). 

The following  de-neutrosophication rule which satisfies the requirement (12) is proposed to obtain 

the parameter Ϝ"(Ⅎ"):  

 Ϝ"(Ⅎ") = b
3 − (𝑇(Ⅎ") + 𝐼(Ⅎ") + 𝐹(Ⅎ")), Ⅎ" < 0
1, Ⅎ" = 0
1 − (𝑇(Ⅎ") + 𝐼(Ⅎ") + 𝐹(Ⅎ"))/𝑐$, Ⅎ" > 0,

   (22) 

where 𝑐$ ≥ 3. 

6.3. Statistical ranking 

We compare six methods, of which three are FMSM, FSM, and FGD based on appropriately defined 

NSL, while the other three MSM, SM, and GD methods are well known in the literature. To this aim, we 

perform competitions on standard test functions with given initial points from (Andrei, 2008; Bongartz et 

al., 1995). We compare MSM, SM, GD, FSM, FGD, and FMSM methods in three decisive criteria: The 

CPU time in seconds - CPUts; the number of iterative steps - NI; the number of function evaluations - NFE. 

 

 Average of iterations' performance 

 

 Average of function evaluations performance 
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 Average of time consumption's performance 

The performances of the optimization methods GD, SM, MSM and their fuzzy duals FGD, FSM, 

FMSM are ranked on solving the 30 test functions. 

Figure 2 shows the iterations' performance rank of the optimization methods. Note that a method is 

regarded as rank 1 if it requires the fewest iterations out of all the considered methods. If a method has the 

second-fewest iterations compared to all the compared methods, it would be considered rank 2. The ranking 

process continues until the last method of rank 6. Figure 3 shows the function evaluations performance rank 

of the optimization methods. Figure 4 shows the CPU time consumption performance rank 

The general observation is that the FMSM is the best with respect to iterations' performance and the 

CPU time consumption performance. On the other hand, the MSM has the best function evaluation 

performance. 

7. Conclusion 

Line search iterations for solving unconstrained optimization are improved utilizing an additional 

step parameter produced by appropriately defined netrosophic system. More precisely, using an appropriate 

neutrosophic logic, we propose a new approach in solving uncertainty in defining parameters involved in 

iterations for solving nonlinear optimization methods. The improvement is based on the utilization of the 

Neutrosophic logic in determining appropriate step size usable in various gradient descent methods. 

Performed theoretical analysis reveals convergence of novel iterations under the same conditions as 

for corresponding original methods. Numerical comparison and statistical ranking indicate advantages of 

fuzzy and neutrosophic improvements of underlying line search optimization methods. Our numerical 

experience shows that the neutrosophic parameter Ϝ" is particularly efficient as an additional step size 

composed with previously defined parameters. Additional research can focus on neural network 

optimization (Mourtas & Katsikis, 2022b) or even portfolio optimization problems (Mourtas & Katsikis, 

2022a). 
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