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Abstract 
 

This article is focused on the consideration of universal formulations of the scheduling problem, which can 
be used in the broadest sense for any existing production model. The model must have some external 
parameters for control, but inside it can contain any aspects and moments that are difficult to formalize, for 
example, dynamically appearing operations, merging and splitting batches, not a fixed order of operations, 
accumulating a certain weight to start an operation, and anything else. Four universal scheduling problem 
statements for operational production planning are considered: permutation of the lots processing order, 
permutation of operation priorities, real operation priorities, and lot order with machine tool priorities 
nested problem. The second goal of this paper is to suggest a universal optimization approach for solving 
such problems. A cooperative co-evolutionary method based on self-configuring bio-inspired algorithms 
for combinatorial and/or real optimization is proposed. For lot order with machine tool priorities problem 
a hierarchical co-evolution method with both combinatorial and real optimization is proposed. This 
optimization method helps not only to adjust the parameters of the algorithm in the process of solving the 
problem but also to eliminate the need to choose an algorithm suitable for a particular problem. That is, a 
fully automatic adjustment of the optimization method to the optimization problem is achieved, that 
simplifies the use of intelligent technologies in practice. The effectiveness of the application of this 
approach to the scheduling problem is shown.    
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1. Introduction 

Current trends in technology development open up great opportunities for the active transition of 

many companies to the use of Industry 4.0 technologies (Oztemel & Gursev, 2020). Industry 4.0 includes 

many different areas, such as automation, the implementation of cyber-physical systems, the creation of 

digital twins, increasing production flexibility, increasing productivity, and much more. One of the most 

important areas of Industry 4.0 (Saucedo-Martínez et al., 2018) is the development of intelligent decision 

support systems (DSS) for production systems (Alcácer & Cruz-Machado, 2019), including operational 

production planning (OPP) (Li et al., 2021).  

There is one constant thing for any planning type for any scope of an organization as well as for any 

degree of automation - it is the need to choose an effective, and if possible, optimal solution, that means, 

solving optimization problems. This is useful in various situations such as decision support when choosing 

a set of projects to implement in production, concluding contracts to produce certain products, drawing up 

a schedule for the implementation of projects, or compiling shift-daily tasks, as well as rescheduling when 

the situation changes or when exiting equipment out of order. 

A large gap between the theory of scheduling and its application in practice has been noticed for a 

long time (MacCarthy & Liu, 1993), however, due to the complexity of this problem, it has not been solved 

so far. Even though studies and special cases of the development of DSS for production planning are 

published, their dispersion according to the methods used and subject areas complicates the systematization 

of knowledge in this area. This is confirmed by a small number of meta-analyses and systematic reviews in 

the field of production scheduling, except in some of the most frequently published subject areas, such as 

energy-efficient planning (Gahm et al., 2016), work planning for open pit mining (Moghaddam & Moosavi, 

2019), multidisciplinary production networks (Lohmer & Lasch, 2021). This is also because there are many 

types of scheduling problems, and it is impossible to create a universal scheduling system that can be 

applied to any task after a little revision and customization (Pinedo, 2012). 

In this article, we focus on the consideration of universal formulations of the scheduling problem, 

which can be used in the broadest sense for any existing production model and propose a universal 

optimization approach for solving such problems. 

2. Problem Statement 

The Resource-Constrained Project Scheduling Problem (RCPSP) (Anichkin & Semenov, 2014) is a 

classic formulation for scheduling problems. The project consists of several works (activities) with a given 

processing priority. It is required to assign a start time for each activity, taking into account priority 

relationships and resource constraints, so that the duration of the entire project is minimal. 

Considering this task within the framework of the OPP, we can say that the project is a certain batch 

(lot) on which it is necessary to perform a series of operations in the order specified by the technological 

process. It turns out that in case of production planning, we are talking about several RCPSPs that exist in 

parallel for each lot, which need to be solved simultaneously. Such a problem is difficult because even one 

RCPSP belongs to the class of NP-hard problems (Blazewicz et al., 1983). 
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RCPSP in practice for a real production process is so complex that it is extremely difficult to even 

find a feasible solution in the general formulation of the problem, even for one lot. On the other hand, 

operational production planning requires a quick solution, and any slightest violation of restrictions is 

unacceptable, since a critical condition for working with a real production process is to ensure its stability. 

Thus, it is extremely important to quickly find a feasible solution, so the use of a simulation model that 

guarantees the construction of only feasible solutions is reasonable and allows one to optimize some 

external model parameters, such as lot order or activity priorities. 

Let us consider options for problem formulations that allow us to significantly reduce the dimension 

of the problem and avoid searching for feasible solutions, initially generating them exclusively in a feasible 

set. Let's define that there are several entities in the model, such as equipment (machine tools), employees, 

operations (activities) and technological processes. Each lot corresponds to one of the existing technological 

processes, which can be represented as a tree of operations (Figure 1). Also, the solution can be represented 

as a vector of n-dimensional space, since some non-linear sequence of operations can be converted to a 

string using some mapping. 

 

 An example of an operation tree for a technological process 

The RCPSP can be considered not only as a conditional optimization problem with real variables to 

find the start time of each operation, but also, for example, as a hierarchical problem, where at the top level 

there is a combinatorial optimization problem to determine the lot order, and the nested RCPSP is replaced 

by a simulation model with a greedy strategy. It can be called a hierarchical scheduling problem (Semenkina 

et al., 2019). In such formulation the problem of lot order determining is reduced to the traveling salesman 

problem. Figure 2 shows an example of coding a solution as lot order (LO). In this case, all operations of 

one lot have a higher priority than all operations of the other lot, and they will be scheduled earlier, but 

considering technological restrictions. 

 

 An example of solution encoding in the problem of choosing the order of batches 
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Two other options for presenting decisions are illustrated in Figure 3 activity priority (AP) or priority 

order (PO). At the beginning of the scheduling process, a list of available operations is determined, which 

consists of the first operations of all lots. At each step, from the operations in this list, the one with the 

highest priority is selected and scheduled. After removing this operation from the list, one must add to it all 

the following operations that have become available after the current one has been completed. The process 

continues until the list of operations become empty. 

 

 An example of solution encoding as priorities 

And the last of the problem statements under consideration is the hierarchical problem of lot order 

with a nested problem of machine tool priorities (LO-MTP). In this case, at the top level is the lot order 

problem discussed above. Additionally, after determining the order of the lots, the problem of equipment 

priority is solved to make the production more flexible. Thus, the operations for the lots will not be assigned 

to the first available machine tool, but to that which has a higher priority. This makes the model less greedy. 

 

 An example of solution in the lot order problem with machine tool priorities nested problem 

3. Research Questions 

In this study, the question of which general formulation of the scheduling problem shows the best 

efficiency was considered. Problem statements with a choice of lot order allow the use a production model 

of any complexity but have less flexibility. The question of research is to find out if they are as effective as 

problem formulations with operation priorities, which impose restrictions on the model in the form of the 
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need to know in advance the sequence and number of operations for each lot before launch, which means 

that dynamically appearing operations, mixing batches and some other things are prohibited.  

The second research question is to find out whether the use of the hierarchical self-configuring co-

evolution is justified. This method helps to automate the choice of an algorithm for solving a problem and 

setting its parameters right at the time of solving the problem. This helps to simplify the use of intelligent 

technologies in practice by non-specialists. 

4. Purpose of the Study 

The purpose of the study is to improve the validity of decision-making when using intelligent 

technologies in the field of operational production planning by automating their design using hierarchical 

self-configuring co-evolutional algorithms. 

5. Research Methods 

According to a 2019 review (Liu et al., 2019), the most popular methods for solving scheduling 

problems are the genetic algorithm, the particle swarm algorithm, the bee colony algorithm, and the ant 

colony optimization. In this work, different algorithms are used for real and combinatorial optimization, 

but all of them have proven themselves well in their field. For real optimization, these are the genetic 

algorithm (GA) (Holland, 1975), the particle swarm optimization (PSO) (Bansal, 2019), and the differential 

evolution algorithm (DE) (Lampinen & Storn, 2004). For combinatorial optimization, it is also GA, Ant 

Colony Optimization (ACO) (Dorigo & Stützle, 2010), Intelligent Water Drops (IWDs) (Hosseini, 2007), 

and Lin-Kernighan Heuristics (LKH) (Lin & Kernighan, 1973). 

All the algorithms mentioned above have many settings which must be selected for the problem 

being solved, that complicates their use, especially in practice. The solution to this problem is the use of 

the self-configuration method (Semenkin & Semenkina, 2012), which allows one to automate this process 

and not spend additional resources on choosing the algorithm settings. This approach, in addition to saving 

resources, allows the algorithm to be more flexible and better adapt to the problem at different stages of the 

optimization process. Thus, the following algorithms are considered here: Self-Configuring GA (ScGA), 

Self-Configuring PSO (ScPSO), and Self-Configuring DE (ScDE) for real optimization, as well as ScGA 

and ScACO for combinatorial optimization. 

The next step in adapting the method to the problem in the process of solving is the automated 

selection of a self-configuring algorithm that is more suitable at the current moment. In this work, we use 

cooperative coevolution (CC) (Emelyanova & Semenkin, 2004). The main idea of CC is that the self-

configuring algorithms work independently for a certain period, during which their performances are 

evaluated. After this period and evaluation of the algorithms, the computing resources are redistributed in 

such a way that the best algorithm gets more computing resources at the expense of the less efficient ones 

in this period. In addition, the best-known solutions are transferred to all algorithms, implementing the so-

called migration, i.e., the algorithms are not only competing for computational resources but also 

cooperating by sharing all-round achievements. 
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Thus, to solve problems, a cooperative coevolutionary real optimization algorithm is used, which 

includes ScGA, ScPSO, and ScDE (ScCCreal), as well as a cooperative coevolutionary combinatorial 

optimization algorithm consisting of ScGA, ScACO, and IWDs (ScCCcomb). For hierarchical lot order 

problem with machine tool priorities nested problem were used ScCCcomb for top-level problem and 

ScCCreal for the nested one, so this is the hierarchical co-evolution method. 

6. Findings 

The study of the efficiency of solving problems in the formulations described above using 

cooperative coevolution of the described algorithms was carried out on six tasks generated using 

pseudorandom numbers with dimensions from 75 to 365 operations of all lots (Liu et al., 2019) (for the LO 

formulation of the same problems, it was from 10 to 60, respectively). All calculations were performed 

with the same number of objective function calculations. To collect statistical data, each algorithm with 

each setting was run 50 times independently. In addition, it is important to note that the criterion for 

evaluating solutions (the final duration of the plan, which should be minimized) due to the large dimension 

of the tasks, does not guarantee that the global optimum has been found, that means that only a comparison 

of the relative efficiency of algorithms and problem formulations is available. 

To compare the efficiency of classical algorithms and their modified versions, the statistics of 

classical algorithms are used, averaged not only over runs but also over all algorithm settings. For example, 

for GA these are all possible combinations of all types of selection, crossing-over, mutation, for PSO - 

social and cognitive coefficients, as well as inertial weight. In addition to the average efficiency variant of 

the algorithm, the best algorithm is also given, that is, for example, GA (best) is a GA variant with settings 

that showed the best efficiency on the current problem. 

Solutions to different problems differ greatly in absolute value, so the worst result was chosen for 

each of the problems, and then all the results of all algorithms were divided by this worst result. Thus, the 

solutions are presented on a scale from 0 to 1, where 1 is obviously the worst option, and the closer the 

value is to 0, the better solution was found. 

Figures 5, 6, 7, and 8 show the results of all the algorithms described above for various problem 

formulations. Regardless of the formulation, there is an obvious tendency that the self-configuring version 

of the algorithm, of course, loses to the algorithm with the best settings on the problem, but outperforms 

the algorithm averaged over the settings. When someone solving real-world practical problems there is no 

way to spend computing resources on choosing the best settings, so the use of the self-configuration method 

is preferable in this case. This is also justified by the fact that the results obtained during the experiments 

show that on different tasks different settings have shown themselves to be the most effective. 

In addition, co-evolution using self-configuring algorithms shows results comparable to the 

algorithms that compose it separately. ScCC has maximum flexibility in solving the problem and can adapt 

to each stage both by choosing an algorithm and by choosing its settings. 
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 Algorithm results for the problem LO 

 

 Algorithm results for the problem PO 

 

 Algorithm results for the problem AP 
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 Algorithm results for the problem LO-MTP 

Separately, a comparison was made between different problem statements, namely, the choice of lot 

order, the order of priorities of operations, real priorities of operations, and lot order with nested machine 

tool priorities problem. Figure 9 shows the result for each problem, averaged over all the algorithms that 

were used for this problem. In Figure 10, the results are illustrated exclusively for co-evolution algorithms 

- ScCCcomb was used for lot order selection (LO) and priority order selection (PO), ScCCreal was used 

for real operation priority (AP) selection, and combination of ScCCcomb and ScCCreal (hierarchical co-

evolution) for lot order with nested machine tool priorities problem (LO-MTP). 

 

 Comparison of problem formulations averaged over algorithms 
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 Comparison of problem formulations on results of ScCC 

The LO problem has a significantly lower dimension, since it includes the order of only lots, fixing 

their strict prioritization between each other, while PO and AP have a dimension in the form of the sum of 

the number of all operations in all lots, which is ten times more. LO-MTP also has bigger dimension because 

it includes all amount of machine tools. It is interesting to note that this obviously makes the LO statement 

much less flexible, preventing more diverse solutions from being considered. However, the LO setting does 

not show the worst result for all problems but rather competes with the others on problems of higher 

dimensions. In addition, if we consider not only the result averaged over the algorithms, but also ScCC, 

then the LO formulation sows better results. 

It is important to note that although the PO and AP formulations show the best efficiency on average, 

they are not applicable in practice in all situations, just like the classical RCPSP formulation, where the 

decision vector is the start point of all operations of all lots. This is due to the fact that in real production, 

often the technological process for the production of one lot cannot be predetermined step by step. For 

example, there are often accumulations of material up to a certain mass, which means that it is not possible 

to predict in advance which lots will be combined before building the schedule, since this is determined by 

the order of their arrival, and therefore the order of launch into production. In addition, many production 

processes can be described in the simulation model in the form of dynamically occurring events, the number 

and time of which cannot be predicted in advance. 

7. Conclusion 

The article considers and investigates bionic algorithms for real and combinatorial optimization, 

such as the genetic algorithm, the swarm particle optimization, the differential evolution, the ant colony 

optimization, and the intelligent water drops algorithm. Also, self-configuring versions of these algorithms 

were presented, and the cooperative co-evolutionary algorithm was proposed that effectively uses self-

configuring bionic algorithms while solving the problem. 

The self-configuration method shows competitive results that are superior to the classic algorithm 

averaged over its settings. Cooperative co-evolution of self-configuring bionic algorithms shows some of 

the best results on the problem and, in addition, often performs better than its individual components. In 

addition, such an integration of the two approaches significantly expands the possibilities of applying 

optimization algorithms in practice, since it does not require the involvement of experts in the field of bionic 

optimization algorithms. 

The problem formulation of operational production planning through determining the lot order, 

despite slightly worse average results, performs well on problems of large dimensions and can be compared 

with two more flexible formulations - real priorities of operations and permutation of priorities of 

operations. In addition, this formulation has great potential for use in complex industries with technological 

processes that require non-standard methods of description. For more flexibility one can use also 

hierarchical lot order with nested machine tool priorities problem statement that shows competitive result. 
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